Verwenden Sie Python, um Filter für EMZ-Bilder anzuwenden
Erstellen Sie Python-Apps zum Filtern von EMZ-Bildern und Fotos über Server-APIs
So filtern Sie EMZ-Bilder und Fotos mit Python
Jedes gut aufgenommene Foto birgt das Potenzial zur Verbesserung, die Chance, sich zu etwas völlig Besonderem und zu einer einzigartigen Kreation zu entwickeln. Filter dienen als vielseitiges Werkzeug zur Bild- und Fotoverbesserung und ermöglichen es Ihnen, die Schärfe gezielt zu verbessern, Unschärfen einzuführen oder Farbartefakte zu beseitigen, um ein wirklich unverwechselbares Ergebnis zu erzielen. Experimentieren Sie mit Bildeffekten einzeln oder in Kombination, um Farbverläufe nahtlos zu verschmelzen, unerwünschtes Rauschen zu eliminieren und die Schärfe von Objektkanten in Ihrem Foto zu verbessern. Um diese Bildfilter auf EMZ-Dateien anzuwenden, verwenden wir Aspose.Imaging for Python via .NET API, eine funktionsreiche, leistungsstarke und benutzerfreundliche Bildbearbeitungs- und Konvertierungs-API für die Python-Plattform. Sie können es mit dem folgenden Befehl aus Ihrem Systembefehl installieren.
Die Systembefehlszeile
>> pip install aspose-imaging-python-net
Schritte zum Filtern von EMZs über Python
Sie benötigen aspose-imaging-python-net , um den folgenden Workflow in Ihrer eigenen Umgebung auszuprobieren.
- Laden Sie EMZ-Dateien mit der Image.Load-Methode
- Bilder filtern;
- Speichern Sie komprimierte Bilder im von Aspose.Imaging unterstützten Format auf Disc
System Anforderungen
Aspose.Imaging für Python wird auf allen wichtigen Betriebssystemen unterstützt. Stellen Sie einfach sicher, dass Sie die folgenden Voraussetzungen erfüllen.
- Microsoft Windows / Linux mit .NET Core Runtime.
- Python- und PyPi-Paketmanager.
EMZ-Bilder filtern – Python
from aspose.imaging import RasterImage, Image, IMultipageImage, Rectangle | |
from aspose.imaging.imagefilters.filteroptions import * | |
from aspose.imaging.imageoptions import PngOptions | |
from aspose.pycore import as_of, is_assignable | |
import os | |
if 'TEMPLATE_DIR' in os.environ: | |
templates_folder = os.environ['TEMPLATE_DIR'] | |
else: | |
templates_folder = r"C:\Users\USER\Downloads\templates" | |
delete_output = 'SAVE_OUTPUT' not in os.environ | |
def delete_file(file): | |
if delete_output: | |
os.remove(file) | |
def small_rectangular_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), SmallRectangularFilterOptions()), "smallrectangular") | |
def big_rectangular_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), BigRectangularFilterOptions()), "bigrectangular") | |
def sharpen_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), SharpenFilterOptions()), "sharpen") | |
def motion_wiener_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), MotionWienerFilterOptions(20, 2, 0)), "motionwiener") | |
def bilateral_smoothing_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), BilateralSmoothingFilterOptions()), "bilateralsmoothing") | |
def gauss_blur_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), GaussianBlurFilterOptions(5, 4)), "gaussblur") | |
def gauss_wiener_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), GaussWienerFilterOptions(5, 5)), "gausswiener") | |
def median_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), MedianFilterOptions(20)), "median") | |
def filter_images(do_filter, filter_name): | |
obj_init = [] | |
obj_init.append("jpg") | |
obj_init.append("png") | |
obj_init.append("bmp") | |
obj_init.append("apng") | |
obj_init.append("dicom") | |
obj_init.append("jp2") | |
obj_init.append("j2k") | |
obj_init.append("tga") | |
obj_init.append("webp") | |
obj_init.append("tiff") | |
obj_init.append("gif") | |
obj_init.append("ico") | |
raster_formats = obj_init | |
obj_init2 = [] | |
obj_init2.append("svg") | |
obj_init2.append("otg") | |
obj_init2.append("odg") | |
obj_init2.append("eps") | |
obj_init2.append("wmf") | |
obj_init2.append("emf") | |
obj_init2.append("wmz") | |
obj_init2.append("emz") | |
obj_init2.append("cmx") | |
obj_init2.append("cdr") | |
vector_formats = obj_init2 | |
all_formats = raster_formats | |
all_formats.extend(vector_formats) | |
for format_ext in all_formats: | |
input_file = os.path.join(templates_folder, f"template.{format_ext}") | |
is_vector_format = format_ext in vector_formats | |
if is_vector_format: | |
input_file = rasterize_vector_image(format_ext, input_file) | |
output_file = os.path.join(templates_folder, f"{filter_name}_{format_ext}.png") | |
print(format_ext) | |
# explicit type casting from Image to RasterImage | |
with as_of(Image.load(input_file), RasterImage) as image: | |
multi_page = None | |
# if image implements an IMultipageImage interface | |
if is_assignable(image, IMultipageImage): | |
multi_page = as_of(image, IMultipageImage) | |
if multi_page is not None and multi_page.page_count > 1: | |
page_index = 0 | |
for page in multi_page.pages: | |
file_name = f"{filter_name}_page{page_index}_{format_ext}.png" | |
do_filter(as_of(page, RasterImage)) | |
page.save(templates_folder + file_name, PngOptions()) | |
delete_file(templates_folder + file_name) | |
page_index += 1 | |
else: | |
do_filter(image) | |
image.save(output_file, PngOptions()) | |
delete_file(output_file) | |
if is_vector_format: | |
delete_file(input_file) | |
def rasterize_vector_image(format_ext, input_file): | |
output_file = os.path.join(templates_folder, "rasterized.{format_ext}.png") | |
with Image.load(input_file) as image: | |
image.save(output_file, PngOptions()) | |
return output_file | |
# run | |
median_filter() | |
Über Aspose.Imaging für die Python-API
Aspose.Imaging API ist eine Bildverarbeitungslösung zum Erstellen, Ändern, Zeichnen oder Konvertieren von Bildern (Fotos) in Anwendungen. Es bietet: plattformübergreifende Bildverarbeitung, einschließlich, aber nicht beschränkt auf Konvertierungen zwischen verschiedenen Bildformaten (einschließlich einheitlicher Mehrseiten- oder Multiframe-Bildverarbeitung), Modifikationen wie Zeichnen, Arbeiten mit grafischen Grundelementen, Transformationen (Größe ändern, Zuschneiden, Spiegeln und Drehen , Binarisierung, Graustufen, Anpassen), erweiterte Bildbearbeitungsfunktionen (Filtern, Dithering, Maskieren, Entzerren) und Strategien zur Speicheroptimierung. Es ist eine eigenständige Bibliothek und hängt von keiner Software für Bildoperationen ab. Mit nativen APIs können innerhalb von Projekten problemlos hochleistungsfähige Bildkonvertierungsfunktionen hinzugefügt werden. Dies sind 100 % private lokale APIs und Bilder werden auf Ihren Servern verarbeitet.Filtern Sie EMZs über die Online-App
Filtern Sie EMZ-Dokumente, indem Sie unsere [Live-Demo-Website] ( https://products.aspose.app/imaging/image-Filter ) besuchen. Die Live-Demo hat die folgenden Vorteile
EMZ Was ist EMZ Datei Format
Eine Datei mit der EMZ-Dateierweiterung ist eine komprimierte Bilddatei, die genauer als Windows Compressed Enhanced Metafile-Datei bezeichnet wird
WesenAndere unterstützte Filterformate
Mit Python kann man einfach verschiedene Formate filtern, einschließlich.