Använd Python för att använda filter för ICO-bilder
Skapa Python-appar för att filtrera ICO-bilder och foton via server-API:er
Hur man filtrerar bilder och foton i ICO med Python
Varje välfångat foto har potential för förbättring, en chans att utvecklas till något helt distinkt och framstå som en unik skapelse. Filter fungerar som ett mångsidigt verktyg för bild- och fotoförbättring, så att du selektivt kan förbättra skärpan, introducera oskärpa eller eliminera färgartefakter för ett verkligt distinkt resultat. Experimentera med bildeffekter individuellt eller i kombination för att sömlöst blanda färggradienter, eliminera oönskat brus och förbättra skärpan hos objektkanterna i ditt foto. Vi kommer att använda dessa bildfilter på ICO-filer Aspose.Imaging for Python via .NET API som är ett funktionsrikt, kraftfullt och lättanvänt API för bildmanipulation och konvertering för Python-plattformen. Du kan installera det med följande kommando från ditt systemkommando.
Systemets kommandorad
>> pip install aspose-imaging-python-net
Steg för att filtrera ICO via Python
Du behöver aspose-imaging-python-net för att prova följande arbetsflöde i din egen miljö.
- Ladda ICO-filer med Image.Load-metoden
- Filtrera bilder;
- Spara komprimerad bild på skiva i det format som stöds av Aspose.Imaging
Systemkrav
Aspose.Imaging för Python stöds på alla större operativsystem. Se bara till att du har följande förutsättningar.
- Microsoft Windows / Linux med .NET Core Runtime.
- Python och PyPi pakethanterare.
Filtrera bilder i ICO - Python
from aspose.imaging import RasterImage, Image, IMultipageImage, Rectangle | |
from aspose.imaging.imagefilters.filteroptions import * | |
from aspose.imaging.imageoptions import PngOptions | |
from aspose.pycore import as_of, is_assignable | |
import os | |
if 'TEMPLATE_DIR' in os.environ: | |
templates_folder = os.environ['TEMPLATE_DIR'] | |
else: | |
templates_folder = r"C:\Users\USER\Downloads\templates" | |
delete_output = 'SAVE_OUTPUT' not in os.environ | |
def delete_file(file): | |
if delete_output: | |
os.remove(file) | |
def small_rectangular_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), SmallRectangularFilterOptions()), "smallrectangular") | |
def big_rectangular_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), BigRectangularFilterOptions()), "bigrectangular") | |
def sharpen_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), SharpenFilterOptions()), "sharpen") | |
def motion_wiener_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), MotionWienerFilterOptions(20, 2, 0)), "motionwiener") | |
def bilateral_smoothing_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), BilateralSmoothingFilterOptions()), "bilateralsmoothing") | |
def gauss_blur_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), GaussianBlurFilterOptions(5, 4)), "gaussblur") | |
def gauss_wiener_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), GaussWienerFilterOptions(5, 5)), "gausswiener") | |
def median_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), MedianFilterOptions(20)), "median") | |
def filter_images(do_filter, filter_name): | |
obj_init = [] | |
obj_init.append("jpg") | |
obj_init.append("png") | |
obj_init.append("bmp") | |
obj_init.append("apng") | |
obj_init.append("dicom") | |
obj_init.append("jp2") | |
obj_init.append("j2k") | |
obj_init.append("tga") | |
obj_init.append("webp") | |
obj_init.append("tiff") | |
obj_init.append("gif") | |
obj_init.append("ico") | |
raster_formats = obj_init | |
obj_init2 = [] | |
obj_init2.append("svg") | |
obj_init2.append("otg") | |
obj_init2.append("odg") | |
obj_init2.append("eps") | |
obj_init2.append("wmf") | |
obj_init2.append("emf") | |
obj_init2.append("wmz") | |
obj_init2.append("emz") | |
obj_init2.append("cmx") | |
obj_init2.append("cdr") | |
vector_formats = obj_init2 | |
all_formats = raster_formats | |
all_formats.extend(vector_formats) | |
for format_ext in all_formats: | |
input_file = os.path.join(templates_folder, f"template.{format_ext}") | |
is_vector_format = format_ext in vector_formats | |
if is_vector_format: | |
input_file = rasterize_vector_image(format_ext, input_file) | |
output_file = os.path.join(templates_folder, f"{filter_name}_{format_ext}.png") | |
print(format_ext) | |
# explicit type casting from Image to RasterImage | |
with as_of(Image.load(input_file), RasterImage) as image: | |
multi_page = None | |
# if image implements an IMultipageImage interface | |
if is_assignable(image, IMultipageImage): | |
multi_page = as_of(image, IMultipageImage) | |
if multi_page is not None and multi_page.page_count > 1: | |
page_index = 0 | |
for page in multi_page.pages: | |
file_name = f"{filter_name}_page{page_index}_{format_ext}.png" | |
do_filter(as_of(page, RasterImage)) | |
page.save(templates_folder + file_name, PngOptions()) | |
delete_file(templates_folder + file_name) | |
page_index += 1 | |
else: | |
do_filter(image) | |
image.save(output_file, PngOptions()) | |
delete_file(output_file) | |
if is_vector_format: | |
delete_file(input_file) | |
def rasterize_vector_image(format_ext, input_file): | |
output_file = os.path.join(templates_folder, "rasterized.{format_ext}.png") | |
with Image.load(input_file) as image: | |
image.save(output_file, PngOptions()) | |
return output_file | |
# run | |
median_filter() | |
Om Aspose.Imaging för Python API
Aspose.Imaging API är en bildbehandlingslösning för att skapa, modifiera, rita eller konvertera bilder (foton) i applikationer. Det erbjuder: plattformsoberoende bildbehandling, inklusive men inte begränsat till konverteringar mellan olika bildformat (inklusive enhetlig bildbehandling med flera sidor eller flera ramar), modifieringar som ritning, arbete med grafiska primitiver, transformationer (ändra storlek, beskära, vänd och rotera , binarisering, gråskala, justera), avancerade bildmanipuleringsfunktioner (filtrering, vibrering, maskering, avskedning) och minnesoptimeringsstrategier. Det är ett fristående bibliotek och är inte beroende av någon programvara för bildoperationer. Man kan enkelt lägga till högpresterande bildkonverteringsfunktioner med inbyggda API:er inom projekt. Dessa är 100 % privata API:er på plats och bilder bearbetas på dina servrar.Filtrera ICO via onlineapp
Filtrera ICO-dokument genom att besöka vår webbplats för Live Demos . Livedemon har följande fördelar
ICO Vad är ICO Filformat
ICO-filformatet är ett bildfilformat för datorikoner i Microsoft Windows. ICO-filer innehåller en eller flera små bilder i flera storlekar och färgdjup, så att de kan skalas på lämpligt sätt. I Windows måste alla körbara filer som visar en ikon för användaren, på skrivbordet, i Start-menyn eller i Utforskaren i Windows, bära ikonen i ICO-format.
Läs merAndra filterformat som stöds
Med hjälp av Python kan man enkelt filtrera olika format inklusive.