WMF Görselleri Karikatürleştirmek için Python kullanın
Sunucu API’leri aracılığıyla WMF Görsel ve Fotoğrafları Karikatürleştirmek için Python Uygulama Oluşturun
Python ile WMF Görselleri ve Fotoğrafları Karikatürleştirme
Nostalji duygusu uyandırma özelliğinden dolayı çizgi film görsellerine otomatik olarak tepki veriyoruz. Grafik tasarım alanında karikatür tarzı görseller, pazarlama makalelerinde sıklıkla görülen önemli unsurlar olarak hizmet eder. Bu Cartoonify efekti, fotoğraf portrelerini elle çizilmiş yorumlara dönüştürmeyi, parlaklığı ayarlamayı, siyah beyaza dönüştürmeyi, renk paletleriyle oynamayı ve karmaşık görsel efektler oluşturmak için çeşitli düzenleme tekniklerini birleştirmeyi içerir. ‘AdjustBrightness’, ‘BinarizeFixed’, ‘Filter’, ‘ReplaceColor’ ve ‘ApplyMask’ dahil olmak üzere bir dizi görüntü filtresi, kullanıcılara bu dönüşümleri gerçekleştirme gücü verir. Bu filtreler, indirilen orijinal formattaki görseller ve fotoğraflar üzerinde kullanılabilir. Karikatür tarzı görüntüler, çeşitli web sayfalarında örnekleme amacıyla uygundur, bilimsel makalelere canlılık katar ve içeriği kullanıcılar için daha çekici hale getirir, ardından siteye daha fazla trafik çeker. WMF görüntüleri kullanarak çizgi film efektleri oluşturmak için şunları kullanacağız: Python platformu için zengin özelliklere sahip, güçlü ve kullanımı kolay bir görüntü işleme ve dönüştürme API’si olan Aspose.Imaging for Python via .NET API. Sistem komutunuzdan aşağıdaki komutu kullanarak kurabilirsiniz.
Sistem komut satırı
>> pip install aspose-imaging-python-net
WMF'leri Python aracılığıyla Karikatürleştirme Adımları
Aşağıdaki iş akışını kendi ortamınızda denemek için aspose-imaging-python-net gerekir.
- WMF dosyalarını Image.Load yöntemiyle yükleyin
- Resimleri karikatürize edin;
- Sıkıştırılmış görüntüyü Aspose.Imaging formatında diske kaydedin
sistem gereksinimleri
Aspose.Imaging for Python tüm büyük işletim sistemlerinde desteklenir. Sadece aşağıdaki ön koşullara sahip olduğunuzdan emin olun.
- .NET Core Runtime ile Microsoft Windows / Linux.
- Python ve PyPi paket yöneticisi.
WMF resimleri karikatürize edin - Python
using Aspose.Imaging; | |
using Aspose.Imaging.FileFormats.Png; | |
using Aspose.Imaging.ImageFilters.FilterOptions; | |
using Aspose.Imaging.ImageOptions; | |
using Aspose.Imaging.Masking; | |
using Aspose.Imaging.Masking.Options; | |
using System; | |
using System.Collections.Generic; | |
using System.IO; | |
using System.Linq; | |
string templatesFolder = @"c:\Users\USER\Downloads"; | |
Cartoonify(); | |
void Cartoonify() | |
{ | |
FilterImages(image => | |
{ | |
using (var processedImage = new PngImage(image)) | |
{ | |
image.Resize(image.Width * 2, image.Height, ResizeType.LeftTopToLeftTop); | |
processedImage.Cartoonify(); | |
var gr = new Graphics(image); | |
gr.DrawImage(processedImage, processedImage.Width, 0); | |
gr.DrawLine(new Pen(Color.DarkRed, 3), processedImage.Width, 0, processedImage.Width, image.Height); | |
} | |
}, "cartoonify"); | |
} | |
string RasterizeVectorImage(string formatExt, string inputFile) | |
{ | |
string outputFile = Path.Combine(templatesFolder, $"rasterized.{formatExt}.png"); | |
using (var image = Image.Load(inputFile)) | |
{ | |
image.Save(outputFile, new PngOptions()); | |
} | |
return outputFile; | |
} | |
void FilterImages(Action<RasterImage> doFilter, string filterName) | |
{ | |
List<string> rasterFormats = new List<string>() { "jpg", "png", "bmp", "apng", "dicom", | |
"jp2", "j2k", "tga", "webp", "tif", "gif", "ico" }; | |
List<string> vectorFormats = new List<string>() { "svg", "otg", "odg", "eps", "wmf", "emf", "wmz", "emz", "cmx", "cdr" }; | |
List<string> allFormats = new List<string>(rasterFormats); | |
allFormats.AddRange(vectorFormats); | |
allFormats.ForEach( | |
formatExt => | |
{ | |
var inputFile = Path.Combine(templatesFolder, $"template.{formatExt}"); | |
bool isVectorFormat = vectorFormats.IndexOf(formatExt) > -1; | |
//Need to rasterize vector formats before background remove | |
if (isVectorFormat) | |
{ | |
inputFile = RasterizeVectorImage(formatExt, inputFile); | |
} | |
var outputFile = Path.Combine(templatesFolder, $"{filterName}_{formatExt}.png"); | |
Console.WriteLine($"Processing {formatExt}"); | |
using (var image = (RasterImage)Image.Load(inputFile)) | |
{ | |
doFilter(image); | |
//If image is multipage save each page to png to demonstrate results | |
if (image is IMultipageImage multiPage && multiPage.PageCount > 1) | |
{ | |
for (var pageIndex = 0; pageIndex < multiPage.PageCount; pageIndex++) | |
{ | |
string fileName = $"{filterName}_page{pageIndex}_{formatExt}.png"; | |
multiPage.Pages[pageIndex].Save(templatesFolder + fileName, new PngOptions()); | |
File.Delete(templatesFolder + fileName); | |
} | |
} | |
else | |
{ | |
image.Save(outputFile, new PngOptions()); | |
File.Delete(outputFile); | |
} | |
} | |
//Remove rasterized vector image | |
if (isVectorFormat) | |
{ | |
File.Delete(inputFile); | |
} | |
} | |
); | |
} | |
static class ImageFilterExtensions | |
{ | |
public static void Cartoonify(this RasterImage image) | |
{ | |
using var outlines = image.DetectOutlines(Color.Black); | |
image.AdjustBrightness(30); | |
image.Filter(image.Bounds, new MedianFilterOptions(7)); | |
var gr = new Graphics(image); | |
gr.DrawImage(outlines, Point.Empty); | |
} | |
public static RasterImage DetectOutlines(this RasterImage image, Color outlineColor) | |
{ | |
var outlines = new PngImage(image); | |
outlines | |
.GetDataContext() | |
.ApplyConvolutionFilter(ConvolutionFilterOptions.Blur) | |
.ApplyConvolutionFilter(ConvolutionFilterOptions.Outline) | |
.ApplyData(); | |
outlines.BinarizeFixed(30); | |
ImageMasking.ApplyMask(outlines, outlines, new MaskingOptions() { BackgroundReplacementColor = Color.Transparent }); | |
outlines.ReplaceColor(Color.FromArgb(255, 255, 255), 0, outlineColor); | |
outlines.ApplyConvolutionFilter(ConvolutionFilterOptions.Blur); | |
return outlines; | |
} | |
public static RasterImage ApplyOperationToRasterImage(this RasterImage image, Action<RasterImage> operation) | |
{ | |
if (image is IMultipageImage multipage) | |
{ | |
foreach (var page in multipage.Pages) | |
{ | |
operation.Invoke((RasterImage)page); | |
} | |
} | |
else | |
{ | |
operation.Invoke(image); | |
} | |
return image; | |
} | |
public static RasterImage ApplyFilter(this RasterImage image, FilterOptionsBase filterOptions) | |
{ | |
return image.ApplyOperationToRasterImage(img => | |
{ | |
img.Filter(img.Bounds, filterOptions); | |
}); | |
} | |
public static RasterImage ApplyConvolutionFilter(this RasterImage image, ConvolutionFilterOptions filterOptions) | |
{ | |
return image.ApplyOperationToRasterImage(img => | |
{ | |
var pixelsLoader = new ImagePixelsLoader(img.Bounds); | |
img.LoadPartialArgb32Pixels(img.Bounds, pixelsLoader); | |
var outBuffer = new PixelBuffer(img.Bounds, new int[img.Width * img.Height]); | |
ConvolutionFilter.DoFiltering(pixelsLoader.PixelsBuffer, outBuffer, filterOptions); | |
img.SaveArgb32Pixels(outBuffer.Rectangle, outBuffer.Pixels); | |
}); | |
} | |
public static IImageDataContext GetDataContext(this RasterImage image) | |
{ | |
IPixelBuffer GetImageBuffer(RasterImage img) | |
{ | |
var pixelsLoader = new ImagePixelsLoader(img.Bounds); | |
img.LoadPartialArgb32Pixels(img.Bounds, pixelsLoader); | |
return pixelsLoader.PixelsBuffer; | |
} | |
if (image is IMultipageImage multipage) | |
{ | |
return new MultipageDataContext( | |
multipage.Pages.Select(page => new ImageDataContext((RasterImage)page) | |
{ | |
Buffer = GetImageBuffer((RasterImage)page) | |
})); | |
} | |
return new ImageDataContext(image) | |
{ | |
Buffer = GetImageBuffer(image) | |
}; | |
} | |
public static IImageDataContext ApplyToDataContext(this IImageDataContext dataContext, | |
Func<IPixelBuffer, IPixelBuffer> processor) | |
{ | |
if (dataContext is MultipageDataContext multipage) | |
{ | |
foreach (var context in multipage) | |
{ | |
context.Buffer = processor.Invoke(context.Buffer); | |
} | |
} | |
if (dataContext is ImageDataContext imageDataContext) | |
{ | |
imageDataContext.Buffer = processor.Invoke(imageDataContext.Buffer); | |
} | |
return dataContext; | |
} | |
public static IImageDataContext ApplyConvolutionFilter(this IImageDataContext dataContext, | |
ConvolutionFilterOptions filterOptions) | |
{ | |
return dataContext.ApplyToDataContext(buffer => | |
{ | |
var outBuffer = new PixelBuffer(buffer.Rectangle, new int[buffer.Rectangle.Width * buffer.Rectangle.Height]); | |
ConvolutionFilter.DoFiltering(buffer, outBuffer, filterOptions); | |
return outBuffer; | |
}); | |
} | |
} | |
class ConvolutionFilter | |
{ | |
public static void DoFiltering( | |
IPixelBuffer inputBuffer, | |
IPixelBuffer outputBuffer, | |
ConvolutionFilterOptions options) | |
{ | |
var factor = options.Factor; | |
var bias = options.Bias; | |
var kernel = options.Kernel; | |
var filterWidth = kernel.GetLength(1); | |
var filterCenter = (filterWidth - 1) / 2; | |
int x, y; | |
int filterX, filterY, filterPx, filterPy, filterYPos, pixel; | |
double r, g, b, kernelValue; | |
int top = inputBuffer.Rectangle.Top; | |
int bottom = inputBuffer.Rectangle.Bottom; | |
int left = inputBuffer.Rectangle.Left; | |
int right = inputBuffer.Rectangle.Right; | |
for (y = top; y < bottom; y++) | |
{ | |
for (x = left; x < right; x++) | |
{ | |
r = 0; | |
g = 0; | |
b = 0; | |
for (filterY = -filterCenter; filterY <= filterCenter; filterY++) | |
{ | |
filterYPos = filterY + filterCenter; | |
filterPy = filterY + y; | |
if (filterPy >= top && filterPy < bottom) | |
{ | |
for (filterX = -filterCenter; filterX <= filterCenter; filterX++) | |
{ | |
filterPx = filterX + x; | |
if (filterPx >= left && filterPx < right) | |
{ | |
kernelValue = kernel[filterYPos, filterX + filterCenter]; | |
pixel = inputBuffer[filterPx, filterPy]; | |
r += ((pixel >> 16) & 0xFF) * kernelValue; | |
g += ((pixel >> 8) & 0xFF) * kernelValue; | |
b += (pixel & 0xFF) * kernelValue; | |
} | |
} | |
} | |
} | |
r = (factor * r) + bias; | |
g = (factor * g) + bias; | |
b = (factor * b) + bias; | |
r = r > 255 ? 255 : (r < 0 ? 0 : r); | |
g = g > 255 ? 255 : (g < 0 ? 0 : g); | |
b = b > 255 ? 255 : (b < 0 ? 0 : b); | |
outputBuffer[x, y] = ((inputBuffer[x, y] >> 24) << 24) | ((byte)r << 16) | ((byte)g << 8) | (byte)b; | |
} | |
} | |
} | |
} | |
class ConvolutionFilterOptions | |
{ | |
public double Factor { get; set; } = 1.0; | |
public int Bias { get; set; } = 0; | |
public double[,] Kernel { get; set; } | |
public static ConvolutionFilterOptions Blur | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { 1, 2, 1 }, { 2, 4, 2 }, { 1, 2, 1 } }, | |
Factor = 0.25 * 0.25 | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions Sharpen | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { 0, -1, 0 }, { -1, 5, -1 }, { 0, -1, 0 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions Emboss | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { -2, -1, 0 }, { -1, 1, 1 }, { 0, 1, 2 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions Outline | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { -1, -1, -1 }, { -1, 8, -1 }, { -1, -1, -1 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions BottomSobel | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { -1, -2, -1 }, { 0, 0, 0 }, { 1, 2, 1 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions TopSobel | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions LeftSobel | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { 1, 0, -1 }, { 2, 0, -2 }, { 1, 0, -1 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions RightSobel | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } } | |
}; | |
} | |
} | |
} | |
interface IImageDataContext | |
{ | |
void ApplyData(); | |
} | |
class ImageDataContext : IImageDataContext | |
{ | |
public ImageDataContext(RasterImage image) | |
{ | |
this.Image = image; | |
} | |
public RasterImage Image { get; } | |
public IPixelBuffer Buffer { get; set; } | |
public void ApplyData() | |
{ | |
this.Buffer.SaveToImage(this.Image); | |
} | |
} | |
class MultipageDataContext : List<ImageDataContext>, IImageDataContext | |
{ | |
public MultipageDataContext(IEnumerable<ImageDataContext> enumerable) : base(enumerable) | |
{ | |
} | |
public void ApplyData() | |
{ | |
foreach (var context in this) | |
{ | |
context.ApplyData(); | |
} | |
} | |
} | |
class ImagePixelsLoader : IPartialArgb32PixelLoader | |
{ | |
public ImagePixelsLoader(Aspose.Imaging.Rectangle rectangle) | |
{ | |
this.PixelsBuffer = new CompositePixelBuffer(rectangle); | |
} | |
public CompositePixelBuffer PixelsBuffer { get; } | |
public void Process(Aspose.Imaging.Rectangle pixelsRectangle, int[] pixels, Point start, Point end) | |
{ | |
this.PixelsBuffer.AddPixels(pixelsRectangle, pixels); | |
} | |
} | |
interface IPixelBuffer | |
{ | |
Aspose.Imaging.Rectangle Rectangle { get; } | |
int this[int x, int y] | |
{ | |
get; | |
set; | |
} | |
void SaveToImage(RasterImage image); | |
} | |
class PixelBuffer : IPixelBuffer | |
{ | |
public PixelBuffer(Aspose.Imaging.Rectangle rectangle, int[] pixels) | |
{ | |
this.Rectangle = rectangle; | |
this.Pixels = pixels; | |
} | |
public Aspose.Imaging.Rectangle Rectangle { get; } | |
public int[] Pixels { get; } | |
public int this[int x, int y] | |
{ | |
get => this.Pixels[this.GetIndex(x, y)]; | |
set => this.Pixels[this.GetIndex(x, y)] = value; | |
} | |
public void SaveToImage(RasterImage image) | |
{ | |
image.SaveArgb32Pixels(this.Rectangle, this.Pixels); | |
} | |
public bool Contains(int x, int y) | |
{ | |
return this.Rectangle.Contains(x, y); | |
} | |
private int GetIndex(int x, int y) | |
{ | |
x -= this.Rectangle.Left; | |
y -= this.Rectangle.Top; | |
return x + y * this.Rectangle.Width; | |
} | |
} | |
class CompositePixelBuffer : IPixelBuffer | |
{ | |
private readonly List<PixelBuffer> _buffers = new List<PixelBuffer>(); | |
public CompositePixelBuffer(Aspose.Imaging.Rectangle rectangle) | |
{ | |
this.Rectangle = rectangle; | |
} | |
public Aspose.Imaging.Rectangle Rectangle { get; } | |
public int this[int x, int y] | |
{ | |
get => this.GetBuffer(x, y)[x, y]; | |
set => this.GetBuffer(x, y)[x, y] = value; | |
} | |
public void SaveToImage(RasterImage image) | |
{ | |
foreach (var pixelBuffer in this._buffers) | |
{ | |
pixelBuffer.SaveToImage(image); | |
} | |
} | |
public IEnumerable<PixelBuffer> Buffers => this._buffers; | |
public void AddPixels(Aspose.Imaging.Rectangle rectangle, int[] pixels) | |
{ | |
if (this.Rectangle.IntersectsWith(rectangle)) | |
{ | |
this._buffers.Add(new PixelBuffer(rectangle, pixels)); | |
} | |
} | |
private PixelBuffer GetBuffer(int x, int y) | |
{ | |
return this._buffers.First(b => b.Contains(x, y)); | |
} | |
} |
Python API için Aspose.Imaging Hakkında
Aspose.Imaging API, uygulamalar içinde görüntüleri (fotoğrafları) oluşturmak, değiştirmek, çizmek veya dönüştürmek için kullanılan bir görüntü işleme çözümüdür. Şunları sunar: Çeşitli görüntü formatları (tek tip çok sayfalı veya çok çerçeveli görüntü işleme dahil) arasındaki dönüştürmeler dahil ancak bunlarla sınırlı olmamak üzere çapraz platform Görüntü işleme, çizim, grafik temel öğeleriyle çalışma, dönüştürmeler (yeniden boyutlandırma, kırpma, çevirme ve döndürme) gibi değişiklikler , ikilileştirme, gri tonlama, ayarlama), gelişmiş görüntü işleme özellikleri (filtreleme, renk taklidi, maskeleme, eğrilik düzeltme) ve bellek optimizasyon stratejileri. Bu bağımsız bir kitaplıktır ve görüntü işlemleri için herhangi bir yazılıma bağlı değildir. Projelere yerel API’ler ile yüksek performanslı görüntü dönüştürme özellikleri kolayca eklenebilir. Bunlar %100 özel şirket içi API’lerdir ve görüntüler sunucularınızda işlenir.WMF’leri Çevrimiçi Uygulama ile Cartoonify
Canlı Demolar web sitemizi ziyaret ederek WMF belgelerini karikatürize edin. Canlı demo aşağıdaki avantajlara sahiptir
WMF Nedir WMF Dosya formatı
WMF uzantılı dosyalar, vektörün yanı sıra bitmap formatındaki görüntü verilerini depolamak için Microsoft Windows Meta Dosyasını (WMF) temsil eder. Daha doğru olmak gerekirse, WMF, aygıttan bağımsız Grafik dosya biçimlerinin vektör dosya biçimi kategorisine aittir. Windows Grafik Aygıt Arabirimi (GDI), bir görüntüyü ekranda görüntülemek için bir WMF dosyasında depolanan işlevleri kullanır. Gelişmiş Meta Dosyaları (EMF) olarak bilinen WMF'nin daha gelişmiş bir sürümü daha sonra yayımlandı ve bu, biçimi daha zengin özelliklere sahip hale getirdi. Pratik olarak WMF, SVG'ye benzer.
Daha fazla okuDesteklenen Diğer Cartoonify Formatları
Python kullanarak, dahil olmak üzere farklı formatları kolayca Karikatürleştirebilirsiniz.