PPTX DOCX XLSX PDF ODP
Aspose.Imaging  Python
DJVU

使用 Python 將 DJVU 影像卡通化

建立 Python 應用程式以透過伺服器 API 卡通化 DJVU 圖像和照片

如何使用 Python 將 DJVU 影像和照片卡通化

我們會自動對卡通圖像做出反應,因為它們能夠喚起懷舊感。在平面設計領域,卡通風格的圖像是行銷文章中常見的關鍵元素。這種卡通化效果涉及將照片肖像轉換為手繪效果、調整亮度、轉換為黑白、使用調色板以及合併各種編輯技術來製作複雜的視覺效果。一套影像過濾器,包括“AdjustBrightness”、“BinarizeFixed”、“Filter”、“ReplaceColor”和“ApplyMask”,使用戶能夠實現這些轉換。這些濾鏡可用於已下載的原始格式影像和照片。卡通風格的圖像適用於各種網頁的插圖目的,為科學文章註入活力,並使內容對使用者更具吸引力,從而增加網站的流量。若要使用 DJVU 影像產生卡通效果,我們將採用 Aspose.Imaging for Python via .NET API 是一個功能豐富、功能強大且易於使用的圖像處理和轉換 API,適用於 Python 平台。您可以使用系統命令中的以下命令安裝它。

系統命令行

>> pip install aspose-imaging-python-net

通過 Python 對 DJVU 進行卡通化的步驟

您需要 aspose-imaging-python-net 在您自己的環境中嘗試以下工作流程。

  • 使用 Image.Load 方法加載 DJVU 文件 +卡通化圖像;
  • 以 Aspose.Imaging 支持的格式將壓縮圖像保存到光盤

系統要求

所有主要操作系統都支持 Python 的 Aspose.Imaging。只需確保您具有以下先決條件。

  • 帶有 .NET Core 運行時的 Microsoft Windows / Linux。
  • Python 和 PyPi 包管理器。
 

Cartoonify DJVU 圖像 - Python

using Aspose.Imaging;
using Aspose.Imaging.FileFormats.Png;
using Aspose.Imaging.ImageFilters.FilterOptions;
using Aspose.Imaging.ImageOptions;
using Aspose.Imaging.Masking;
using Aspose.Imaging.Masking.Options;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
string templatesFolder = @"c:\Users\USER\Downloads";
Cartoonify();
void Cartoonify()
{
FilterImages(image =>
{
using (var processedImage = new PngImage(image))
{
image.Resize(image.Width * 2, image.Height, ResizeType.LeftTopToLeftTop);
processedImage.Cartoonify();
var gr = new Graphics(image);
gr.DrawImage(processedImage, processedImage.Width, 0);
gr.DrawLine(new Pen(Color.DarkRed, 3), processedImage.Width, 0, processedImage.Width, image.Height);
}
}, "cartoonify");
}
string RasterizeVectorImage(string formatExt, string inputFile)
{
string outputFile = Path.Combine(templatesFolder, $"rasterized.{formatExt}.png");
using (var image = Image.Load(inputFile))
{
image.Save(outputFile, new PngOptions());
}
return outputFile;
}
void FilterImages(Action<RasterImage> doFilter, string filterName)
{
List<string> rasterFormats = new List<string>() { "jpg", "png", "bmp", "apng", "dicom",
"jp2", "j2k", "tga", "webp", "tif", "gif", "ico" };
List<string> vectorFormats = new List<string>() { "svg", "otg", "odg", "eps", "wmf", "emf", "wmz", "emz", "cmx", "cdr" };
List<string> allFormats = new List<string>(rasterFormats);
allFormats.AddRange(vectorFormats);
allFormats.ForEach(
formatExt =>
{
var inputFile = Path.Combine(templatesFolder, $"template.{formatExt}");
bool isVectorFormat = vectorFormats.IndexOf(formatExt) > -1;
//Need to rasterize vector formats before background remove
if (isVectorFormat)
{
inputFile = RasterizeVectorImage(formatExt, inputFile);
}
var outputFile = Path.Combine(templatesFolder, $"{filterName}_{formatExt}.png");
Console.WriteLine($"Processing {formatExt}");
using (var image = (RasterImage)Image.Load(inputFile))
{
doFilter(image);
//If image is multipage save each page to png to demonstrate results
if (image is IMultipageImage multiPage && multiPage.PageCount > 1)
{
for (var pageIndex = 0; pageIndex < multiPage.PageCount; pageIndex++)
{
string fileName = $"{filterName}_page{pageIndex}_{formatExt}.png";
multiPage.Pages[pageIndex].Save(templatesFolder + fileName, new PngOptions());
File.Delete(templatesFolder + fileName);
}
}
else
{
image.Save(outputFile, new PngOptions());
File.Delete(outputFile);
}
}
//Remove rasterized vector image
if (isVectorFormat)
{
File.Delete(inputFile);
}
}
);
}
static class ImageFilterExtensions
{
public static void Cartoonify(this RasterImage image)
{
using var outlines = image.DetectOutlines(Color.Black);
image.AdjustBrightness(30);
image.Filter(image.Bounds, new MedianFilterOptions(7));
var gr = new Graphics(image);
gr.DrawImage(outlines, Point.Empty);
}
public static RasterImage DetectOutlines(this RasterImage image, Color outlineColor)
{
var outlines = new PngImage(image);
outlines
.GetDataContext()
.ApplyConvolutionFilter(ConvolutionFilterOptions.Blur)
.ApplyConvolutionFilter(ConvolutionFilterOptions.Outline)
.ApplyData();
outlines.BinarizeFixed(30);
ImageMasking.ApplyMask(outlines, outlines, new MaskingOptions() { BackgroundReplacementColor = Color.Transparent });
outlines.ReplaceColor(Color.FromArgb(255, 255, 255), 0, outlineColor);
outlines.ApplyConvolutionFilter(ConvolutionFilterOptions.Blur);
return outlines;
}
public static RasterImage ApplyOperationToRasterImage(this RasterImage image, Action<RasterImage> operation)
{
if (image is IMultipageImage multipage)
{
foreach (var page in multipage.Pages)
{
operation.Invoke((RasterImage)page);
}
}
else
{
operation.Invoke(image);
}
return image;
}
public static RasterImage ApplyFilter(this RasterImage image, FilterOptionsBase filterOptions)
{
return image.ApplyOperationToRasterImage(img =>
{
img.Filter(img.Bounds, filterOptions);
});
}
public static RasterImage ApplyConvolutionFilter(this RasterImage image, ConvolutionFilterOptions filterOptions)
{
return image.ApplyOperationToRasterImage(img =>
{
var pixelsLoader = new ImagePixelsLoader(img.Bounds);
img.LoadPartialArgb32Pixels(img.Bounds, pixelsLoader);
var outBuffer = new PixelBuffer(img.Bounds, new int[img.Width * img.Height]);
ConvolutionFilter.DoFiltering(pixelsLoader.PixelsBuffer, outBuffer, filterOptions);
img.SaveArgb32Pixels(outBuffer.Rectangle, outBuffer.Pixels);
});
}
public static IImageDataContext GetDataContext(this RasterImage image)
{
IPixelBuffer GetImageBuffer(RasterImage img)
{
var pixelsLoader = new ImagePixelsLoader(img.Bounds);
img.LoadPartialArgb32Pixels(img.Bounds, pixelsLoader);
return pixelsLoader.PixelsBuffer;
}
if (image is IMultipageImage multipage)
{
return new MultipageDataContext(
multipage.Pages.Select(page => new ImageDataContext((RasterImage)page)
{
Buffer = GetImageBuffer((RasterImage)page)
}));
}
return new ImageDataContext(image)
{
Buffer = GetImageBuffer(image)
};
}
public static IImageDataContext ApplyToDataContext(this IImageDataContext dataContext,
Func<IPixelBuffer, IPixelBuffer> processor)
{
if (dataContext is MultipageDataContext multipage)
{
foreach (var context in multipage)
{
context.Buffer = processor.Invoke(context.Buffer);
}
}
if (dataContext is ImageDataContext imageDataContext)
{
imageDataContext.Buffer = processor.Invoke(imageDataContext.Buffer);
}
return dataContext;
}
public static IImageDataContext ApplyConvolutionFilter(this IImageDataContext dataContext,
ConvolutionFilterOptions filterOptions)
{
return dataContext.ApplyToDataContext(buffer =>
{
var outBuffer = new PixelBuffer(buffer.Rectangle, new int[buffer.Rectangle.Width * buffer.Rectangle.Height]);
ConvolutionFilter.DoFiltering(buffer, outBuffer, filterOptions);
return outBuffer;
});
}
}
class ConvolutionFilter
{
public static void DoFiltering(
IPixelBuffer inputBuffer,
IPixelBuffer outputBuffer,
ConvolutionFilterOptions options)
{
var factor = options.Factor;
var bias = options.Bias;
var kernel = options.Kernel;
var filterWidth = kernel.GetLength(1);
var filterCenter = (filterWidth - 1) / 2;
int x, y;
int filterX, filterY, filterPx, filterPy, filterYPos, pixel;
double r, g, b, kernelValue;
int top = inputBuffer.Rectangle.Top;
int bottom = inputBuffer.Rectangle.Bottom;
int left = inputBuffer.Rectangle.Left;
int right = inputBuffer.Rectangle.Right;
for (y = top; y < bottom; y++)
{
for (x = left; x < right; x++)
{
r = 0;
g = 0;
b = 0;
for (filterY = -filterCenter; filterY <= filterCenter; filterY++)
{
filterYPos = filterY + filterCenter;
filterPy = filterY + y;
if (filterPy >= top && filterPy < bottom)
{
for (filterX = -filterCenter; filterX <= filterCenter; filterX++)
{
filterPx = filterX + x;
if (filterPx >= left && filterPx < right)
{
kernelValue = kernel[filterYPos, filterX + filterCenter];
pixel = inputBuffer[filterPx, filterPy];
r += ((pixel >> 16) & 0xFF) * kernelValue;
g += ((pixel >> 8) & 0xFF) * kernelValue;
b += (pixel & 0xFF) * kernelValue;
}
}
}
}
r = (factor * r) + bias;
g = (factor * g) + bias;
b = (factor * b) + bias;
r = r > 255 ? 255 : (r < 0 ? 0 : r);
g = g > 255 ? 255 : (g < 0 ? 0 : g);
b = b > 255 ? 255 : (b < 0 ? 0 : b);
outputBuffer[x, y] = ((inputBuffer[x, y] >> 24) << 24) | ((byte)r << 16) | ((byte)g << 8) | (byte)b;
}
}
}
}
class ConvolutionFilterOptions
{
public double Factor { get; set; } = 1.0;
public int Bias { get; set; } = 0;
public double[,] Kernel { get; set; }
public static ConvolutionFilterOptions Blur
{
get
{
return new ConvolutionFilterOptions
{
Kernel = new double[,] { { 1, 2, 1 }, { 2, 4, 2 }, { 1, 2, 1 } },
Factor = 0.25 * 0.25
};
}
}
public static ConvolutionFilterOptions Sharpen
{
get
{
return new ConvolutionFilterOptions
{
Kernel = new double[,] { { 0, -1, 0 }, { -1, 5, -1 }, { 0, -1, 0 } }
};
}
}
public static ConvolutionFilterOptions Emboss
{
get
{
return new ConvolutionFilterOptions
{
Kernel = new double[,] { { -2, -1, 0 }, { -1, 1, 1 }, { 0, 1, 2 } }
};
}
}
public static ConvolutionFilterOptions Outline
{
get
{
return new ConvolutionFilterOptions
{
Kernel = new double[,] { { -1, -1, -1 }, { -1, 8, -1 }, { -1, -1, -1 } }
};
}
}
public static ConvolutionFilterOptions BottomSobel
{
get
{
return new ConvolutionFilterOptions
{
Kernel = new double[,] { { -1, -2, -1 }, { 0, 0, 0 }, { 1, 2, 1 } }
};
}
}
public static ConvolutionFilterOptions TopSobel
{
get
{
return new ConvolutionFilterOptions
{
Kernel = new double[,] { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } }
};
}
}
public static ConvolutionFilterOptions LeftSobel
{
get
{
return new ConvolutionFilterOptions
{
Kernel = new double[,] { { 1, 0, -1 }, { 2, 0, -2 }, { 1, 0, -1 } }
};
}
}
public static ConvolutionFilterOptions RightSobel
{
get
{
return new ConvolutionFilterOptions
{
Kernel = new double[,] { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } }
};
}
}
}
interface IImageDataContext
{
void ApplyData();
}
class ImageDataContext : IImageDataContext
{
public ImageDataContext(RasterImage image)
{
this.Image = image;
}
public RasterImage Image { get; }
public IPixelBuffer Buffer { get; set; }
public void ApplyData()
{
this.Buffer.SaveToImage(this.Image);
}
}
class MultipageDataContext : List<ImageDataContext>, IImageDataContext
{
public MultipageDataContext(IEnumerable<ImageDataContext> enumerable) : base(enumerable)
{
}
public void ApplyData()
{
foreach (var context in this)
{
context.ApplyData();
}
}
}
class ImagePixelsLoader : IPartialArgb32PixelLoader
{
public ImagePixelsLoader(Aspose.Imaging.Rectangle rectangle)
{
this.PixelsBuffer = new CompositePixelBuffer(rectangle);
}
public CompositePixelBuffer PixelsBuffer { get; }
public void Process(Aspose.Imaging.Rectangle pixelsRectangle, int[] pixels, Point start, Point end)
{
this.PixelsBuffer.AddPixels(pixelsRectangle, pixels);
}
}
interface IPixelBuffer
{
Aspose.Imaging.Rectangle Rectangle { get; }
int this[int x, int y]
{
get;
set;
}
void SaveToImage(RasterImage image);
}
class PixelBuffer : IPixelBuffer
{
public PixelBuffer(Aspose.Imaging.Rectangle rectangle, int[] pixels)
{
this.Rectangle = rectangle;
this.Pixels = pixels;
}
public Aspose.Imaging.Rectangle Rectangle { get; }
public int[] Pixels { get; }
public int this[int x, int y]
{
get => this.Pixels[this.GetIndex(x, y)];
set => this.Pixels[this.GetIndex(x, y)] = value;
}
public void SaveToImage(RasterImage image)
{
image.SaveArgb32Pixels(this.Rectangle, this.Pixels);
}
public bool Contains(int x, int y)
{
return this.Rectangle.Contains(x, y);
}
private int GetIndex(int x, int y)
{
x -= this.Rectangle.Left;
y -= this.Rectangle.Top;
return x + y * this.Rectangle.Width;
}
}
class CompositePixelBuffer : IPixelBuffer
{
private readonly List<PixelBuffer> _buffers = new List<PixelBuffer>();
public CompositePixelBuffer(Aspose.Imaging.Rectangle rectangle)
{
this.Rectangle = rectangle;
}
public Aspose.Imaging.Rectangle Rectangle { get; }
public int this[int x, int y]
{
get => this.GetBuffer(x, y)[x, y];
set => this.GetBuffer(x, y)[x, y] = value;
}
public void SaveToImage(RasterImage image)
{
foreach (var pixelBuffer in this._buffers)
{
pixelBuffer.SaveToImage(image);
}
}
public IEnumerable<PixelBuffer> Buffers => this._buffers;
public void AddPixels(Aspose.Imaging.Rectangle rectangle, int[] pixels)
{
if (this.Rectangle.IntersectsWith(rectangle))
{
this._buffers.Add(new PixelBuffer(rectangle, pixels));
}
}
private PixelBuffer GetBuffer(int x, int y)
{
return this._buffers.First(b => b.Contains(x, y));
}
}
 
  • 關於 Python API 的 Aspose.Imaging

    Aspose.Imaging API 是一種圖像處理解決方案,用於在應用程序中創建、修改、繪製或轉換圖像(照片)。它提供:跨平台的圖像處理,包括但不限於各種圖像格式之間的轉換(包括統一的多頁或多幀圖像處理)、繪圖等修改、使用圖形基元、轉換(調整大小、裁剪、翻轉和旋轉) 、二值化、灰度、調整)、高級圖像處理功能(過濾、抖動、遮罩、去偏斜)和內存優化策略。它是一個獨立的庫,不依賴任何軟件進行圖像操作。可以在項目中使用原生 API 輕鬆添加高性能圖像轉換功能。這些是 100% 私有的本地 API,圖像在您的服務器上處理。

    通過在線應用程序卡通化 DJVU

    通過訪問我們的 Live Demos 網站 對 DJVU 文檔進行卡通化。 現場演示有以下好處

      無需下載或設置任何東西
      無需編寫任何代碼
      只需上傳您的 DJVU 文件並點擊 "Cartoonify now" 按鈕
      立即獲取生成文件的下載鏈接

    DJVU 什麼是 DJVU 文件格式

    DjVu,發音為 DJVU,是一種圖形文件格式,用於掃描文檔和書籍,尤其是包含文本、繪圖、圖像和照片組合的文檔和書籍。它是由 AT&T 實驗室開發的。它使用多種技術,例如文本和背景圖像的圖像層分離、漸進式加載、算術編碼和雙色調圖像的有損壓縮。由於 DJVU 文件可以包含壓縮但高質量的彩色圖像、照片、文本和繪圖,因此可以保存在更小的空間中,因此它在網絡上用作電子書、手冊、報紙、古代文件等。

    閱讀更多

    其他支持的卡通化格式

    使用 Python,可以輕鬆卡通化不同的格式,包括。

    APNG (動畫便攜式網絡圖形)
    BMP (位圖圖片)
    ICO (窗口圖標)
    JPG (聯合攝影專家組)
    JPEG (聯合攝影專家組)
    DIB (設備無關位圖)
    DICOM (數碼影像與通訊)
    DNG (數碼相機圖像)
    EMF (增強的元文件格式)
    EMZ (Windows 壓縮增強元文件)
    GIF (圖形交換格式)
    JP2 (JPEG 2000)
    J2K (小波壓縮圖像)
    PNG (便攜式網絡圖形)
    TIFF (標記圖像格式)
    TIF (標記圖像格式)
    WEBP (光柵網絡圖像)
    WMF (微軟視窗元文件)
    WMZ (壓縮的 Windows Media Player 皮膚)
    TGA (塔加圖形)
    SVG (可縮放矢量圖形)
    EPS (封裝的 PostScript 語言)
    CDR (矢量繪圖圖像)
    CMX (Corel 交換圖像)
    OTG (開放文檔標準)
    ODG (Apache OpenOffice 繪圖格式)