Pro kreslení obrázků ve formátu DICOM použijte Python
Vytvářejte aplikace Python pro kreslení obrázků a fotografií ve formátu DICOM prostřednictvím rozhraní API serveru
Jak cartoonify DICOM obrázky a fotografie pomocí Python
Automaticky reagujeme na kreslené obrázky kvůli jejich schopnosti vyvolat pocit nostalgie. V oblasti grafického designu slouží obrázky ve stylu kreslených filmů jako stěžejní prvky, které se často vyskytují v marketingových článcích. Tento efekt Cartoonify zahrnuje převod fotografických portrétů do ručně kreslených ztvárnění, úpravu jasu, převod na černobílý, hraní s barevnými paletami a sloučení různých technik úprav k vytvoření složitých vizuálních efektů. Sada obrazových filtrů, včetně ‘AdjustBrightness’, ‘BinarizeFixed’, ‘Filter’, ‘ReplaceColor’ a ‘ApplyMask’, umožňuje uživatelům dosáhnout těchto transformací. Tyto filtry lze použít na obrázky a fotografie původního formátu, které byly staženy. Snímky ve stylu kreslených filmů jsou vhodné pro ilustrační účely na různých webových stránkách, vnášejí do vědeckých článků vitalitu a činí obsah atraktivnějším pro uživatele, což následně zvyšuje návštěvnost webu. Pro generování kreslených efektů pomocí obrázků DICOM použijeme Aspose.Imaging pro Python přes .NET API, které je funkčně bohaté, výkonné a snadno použitelné rozhraní API pro manipulaci a konverzi obrázků pro platformu Python. Můžete jej nainstalovat pomocí následujícího příkazu ze systémového příkazu.
Příkazový řádek systému
>> pip install aspose-imaging-python-net
Kroky ke kreslení DICOMs přes Python
K vyzkoušení následujícího pracovního postupu ve svém vlastním prostředí potřebujete aspose-imaging-python-net .
- Načíst soubory DICOM metodou Image.Load
- Kreslená pohádka obrázky;
- Uložte komprimovaný obrázek na disk ve formátu podporovaném Aspose.Imaging
Požadavky na systém
Aspose.Imaging pro Python je podporován ve všech hlavních operačních systémech. Jen se ujistěte, že máte následující předpoklady.
- Microsoft Windows / Linux s .NET Core Runtime.
- Správce balíčků Python a PyPi.
Obrázky Kreslená pohádka DICOM – Python
using Aspose.Imaging; | |
using Aspose.Imaging.FileFormats.Png; | |
using Aspose.Imaging.ImageFilters.FilterOptions; | |
using Aspose.Imaging.ImageOptions; | |
using Aspose.Imaging.Masking; | |
using Aspose.Imaging.Masking.Options; | |
using System; | |
using System.Collections.Generic; | |
using System.IO; | |
using System.Linq; | |
string templatesFolder = @"c:\Users\USER\Downloads"; | |
Cartoonify(); | |
void Cartoonify() | |
{ | |
FilterImages(image => | |
{ | |
using (var processedImage = new PngImage(image)) | |
{ | |
image.Resize(image.Width * 2, image.Height, ResizeType.LeftTopToLeftTop); | |
processedImage.Cartoonify(); | |
var gr = new Graphics(image); | |
gr.DrawImage(processedImage, processedImage.Width, 0); | |
gr.DrawLine(new Pen(Color.DarkRed, 3), processedImage.Width, 0, processedImage.Width, image.Height); | |
} | |
}, "cartoonify"); | |
} | |
string RasterizeVectorImage(string formatExt, string inputFile) | |
{ | |
string outputFile = Path.Combine(templatesFolder, $"rasterized.{formatExt}.png"); | |
using (var image = Image.Load(inputFile)) | |
{ | |
image.Save(outputFile, new PngOptions()); | |
} | |
return outputFile; | |
} | |
void FilterImages(Action<RasterImage> doFilter, string filterName) | |
{ | |
List<string> rasterFormats = new List<string>() { "jpg", "png", "bmp", "apng", "dicom", | |
"jp2", "j2k", "tga", "webp", "tif", "gif", "ico" }; | |
List<string> vectorFormats = new List<string>() { "svg", "otg", "odg", "eps", "wmf", "emf", "wmz", "emz", "cmx", "cdr" }; | |
List<string> allFormats = new List<string>(rasterFormats); | |
allFormats.AddRange(vectorFormats); | |
allFormats.ForEach( | |
formatExt => | |
{ | |
var inputFile = Path.Combine(templatesFolder, $"template.{formatExt}"); | |
bool isVectorFormat = vectorFormats.IndexOf(formatExt) > -1; | |
//Need to rasterize vector formats before background remove | |
if (isVectorFormat) | |
{ | |
inputFile = RasterizeVectorImage(formatExt, inputFile); | |
} | |
var outputFile = Path.Combine(templatesFolder, $"{filterName}_{formatExt}.png"); | |
Console.WriteLine($"Processing {formatExt}"); | |
using (var image = (RasterImage)Image.Load(inputFile)) | |
{ | |
doFilter(image); | |
//If image is multipage save each page to png to demonstrate results | |
if (image is IMultipageImage multiPage && multiPage.PageCount > 1) | |
{ | |
for (var pageIndex = 0; pageIndex < multiPage.PageCount; pageIndex++) | |
{ | |
string fileName = $"{filterName}_page{pageIndex}_{formatExt}.png"; | |
multiPage.Pages[pageIndex].Save(templatesFolder + fileName, new PngOptions()); | |
File.Delete(templatesFolder + fileName); | |
} | |
} | |
else | |
{ | |
image.Save(outputFile, new PngOptions()); | |
File.Delete(outputFile); | |
} | |
} | |
//Remove rasterized vector image | |
if (isVectorFormat) | |
{ | |
File.Delete(inputFile); | |
} | |
} | |
); | |
} | |
static class ImageFilterExtensions | |
{ | |
public static void Cartoonify(this RasterImage image) | |
{ | |
using var outlines = image.DetectOutlines(Color.Black); | |
image.AdjustBrightness(30); | |
image.Filter(image.Bounds, new MedianFilterOptions(7)); | |
var gr = new Graphics(image); | |
gr.DrawImage(outlines, Point.Empty); | |
} | |
public static RasterImage DetectOutlines(this RasterImage image, Color outlineColor) | |
{ | |
var outlines = new PngImage(image); | |
outlines | |
.GetDataContext() | |
.ApplyConvolutionFilter(ConvolutionFilterOptions.Blur) | |
.ApplyConvolutionFilter(ConvolutionFilterOptions.Outline) | |
.ApplyData(); | |
outlines.BinarizeFixed(30); | |
ImageMasking.ApplyMask(outlines, outlines, new MaskingOptions() { BackgroundReplacementColor = Color.Transparent }); | |
outlines.ReplaceColor(Color.FromArgb(255, 255, 255), 0, outlineColor); | |
outlines.ApplyConvolutionFilter(ConvolutionFilterOptions.Blur); | |
return outlines; | |
} | |
public static RasterImage ApplyOperationToRasterImage(this RasterImage image, Action<RasterImage> operation) | |
{ | |
if (image is IMultipageImage multipage) | |
{ | |
foreach (var page in multipage.Pages) | |
{ | |
operation.Invoke((RasterImage)page); | |
} | |
} | |
else | |
{ | |
operation.Invoke(image); | |
} | |
return image; | |
} | |
public static RasterImage ApplyFilter(this RasterImage image, FilterOptionsBase filterOptions) | |
{ | |
return image.ApplyOperationToRasterImage(img => | |
{ | |
img.Filter(img.Bounds, filterOptions); | |
}); | |
} | |
public static RasterImage ApplyConvolutionFilter(this RasterImage image, ConvolutionFilterOptions filterOptions) | |
{ | |
return image.ApplyOperationToRasterImage(img => | |
{ | |
var pixelsLoader = new ImagePixelsLoader(img.Bounds); | |
img.LoadPartialArgb32Pixels(img.Bounds, pixelsLoader); | |
var outBuffer = new PixelBuffer(img.Bounds, new int[img.Width * img.Height]); | |
ConvolutionFilter.DoFiltering(pixelsLoader.PixelsBuffer, outBuffer, filterOptions); | |
img.SaveArgb32Pixels(outBuffer.Rectangle, outBuffer.Pixels); | |
}); | |
} | |
public static IImageDataContext GetDataContext(this RasterImage image) | |
{ | |
IPixelBuffer GetImageBuffer(RasterImage img) | |
{ | |
var pixelsLoader = new ImagePixelsLoader(img.Bounds); | |
img.LoadPartialArgb32Pixels(img.Bounds, pixelsLoader); | |
return pixelsLoader.PixelsBuffer; | |
} | |
if (image is IMultipageImage multipage) | |
{ | |
return new MultipageDataContext( | |
multipage.Pages.Select(page => new ImageDataContext((RasterImage)page) | |
{ | |
Buffer = GetImageBuffer((RasterImage)page) | |
})); | |
} | |
return new ImageDataContext(image) | |
{ | |
Buffer = GetImageBuffer(image) | |
}; | |
} | |
public static IImageDataContext ApplyToDataContext(this IImageDataContext dataContext, | |
Func<IPixelBuffer, IPixelBuffer> processor) | |
{ | |
if (dataContext is MultipageDataContext multipage) | |
{ | |
foreach (var context in multipage) | |
{ | |
context.Buffer = processor.Invoke(context.Buffer); | |
} | |
} | |
if (dataContext is ImageDataContext imageDataContext) | |
{ | |
imageDataContext.Buffer = processor.Invoke(imageDataContext.Buffer); | |
} | |
return dataContext; | |
} | |
public static IImageDataContext ApplyConvolutionFilter(this IImageDataContext dataContext, | |
ConvolutionFilterOptions filterOptions) | |
{ | |
return dataContext.ApplyToDataContext(buffer => | |
{ | |
var outBuffer = new PixelBuffer(buffer.Rectangle, new int[buffer.Rectangle.Width * buffer.Rectangle.Height]); | |
ConvolutionFilter.DoFiltering(buffer, outBuffer, filterOptions); | |
return outBuffer; | |
}); | |
} | |
} | |
class ConvolutionFilter | |
{ | |
public static void DoFiltering( | |
IPixelBuffer inputBuffer, | |
IPixelBuffer outputBuffer, | |
ConvolutionFilterOptions options) | |
{ | |
var factor = options.Factor; | |
var bias = options.Bias; | |
var kernel = options.Kernel; | |
var filterWidth = kernel.GetLength(1); | |
var filterCenter = (filterWidth - 1) / 2; | |
int x, y; | |
int filterX, filterY, filterPx, filterPy, filterYPos, pixel; | |
double r, g, b, kernelValue; | |
int top = inputBuffer.Rectangle.Top; | |
int bottom = inputBuffer.Rectangle.Bottom; | |
int left = inputBuffer.Rectangle.Left; | |
int right = inputBuffer.Rectangle.Right; | |
for (y = top; y < bottom; y++) | |
{ | |
for (x = left; x < right; x++) | |
{ | |
r = 0; | |
g = 0; | |
b = 0; | |
for (filterY = -filterCenter; filterY <= filterCenter; filterY++) | |
{ | |
filterYPos = filterY + filterCenter; | |
filterPy = filterY + y; | |
if (filterPy >= top && filterPy < bottom) | |
{ | |
for (filterX = -filterCenter; filterX <= filterCenter; filterX++) | |
{ | |
filterPx = filterX + x; | |
if (filterPx >= left && filterPx < right) | |
{ | |
kernelValue = kernel[filterYPos, filterX + filterCenter]; | |
pixel = inputBuffer[filterPx, filterPy]; | |
r += ((pixel >> 16) & 0xFF) * kernelValue; | |
g += ((pixel >> 8) & 0xFF) * kernelValue; | |
b += (pixel & 0xFF) * kernelValue; | |
} | |
} | |
} | |
} | |
r = (factor * r) + bias; | |
g = (factor * g) + bias; | |
b = (factor * b) + bias; | |
r = r > 255 ? 255 : (r < 0 ? 0 : r); | |
g = g > 255 ? 255 : (g < 0 ? 0 : g); | |
b = b > 255 ? 255 : (b < 0 ? 0 : b); | |
outputBuffer[x, y] = ((inputBuffer[x, y] >> 24) << 24) | ((byte)r << 16) | ((byte)g << 8) | (byte)b; | |
} | |
} | |
} | |
} | |
class ConvolutionFilterOptions | |
{ | |
public double Factor { get; set; } = 1.0; | |
public int Bias { get; set; } = 0; | |
public double[,] Kernel { get; set; } | |
public static ConvolutionFilterOptions Blur | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { 1, 2, 1 }, { 2, 4, 2 }, { 1, 2, 1 } }, | |
Factor = 0.25 * 0.25 | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions Sharpen | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { 0, -1, 0 }, { -1, 5, -1 }, { 0, -1, 0 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions Emboss | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { -2, -1, 0 }, { -1, 1, 1 }, { 0, 1, 2 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions Outline | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { -1, -1, -1 }, { -1, 8, -1 }, { -1, -1, -1 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions BottomSobel | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { -1, -2, -1 }, { 0, 0, 0 }, { 1, 2, 1 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions TopSobel | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions LeftSobel | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { 1, 0, -1 }, { 2, 0, -2 }, { 1, 0, -1 } } | |
}; | |
} | |
} | |
public static ConvolutionFilterOptions RightSobel | |
{ | |
get | |
{ | |
return new ConvolutionFilterOptions | |
{ | |
Kernel = new double[,] { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } } | |
}; | |
} | |
} | |
} | |
interface IImageDataContext | |
{ | |
void ApplyData(); | |
} | |
class ImageDataContext : IImageDataContext | |
{ | |
public ImageDataContext(RasterImage image) | |
{ | |
this.Image = image; | |
} | |
public RasterImage Image { get; } | |
public IPixelBuffer Buffer { get; set; } | |
public void ApplyData() | |
{ | |
this.Buffer.SaveToImage(this.Image); | |
} | |
} | |
class MultipageDataContext : List<ImageDataContext>, IImageDataContext | |
{ | |
public MultipageDataContext(IEnumerable<ImageDataContext> enumerable) : base(enumerable) | |
{ | |
} | |
public void ApplyData() | |
{ | |
foreach (var context in this) | |
{ | |
context.ApplyData(); | |
} | |
} | |
} | |
class ImagePixelsLoader : IPartialArgb32PixelLoader | |
{ | |
public ImagePixelsLoader(Aspose.Imaging.Rectangle rectangle) | |
{ | |
this.PixelsBuffer = new CompositePixelBuffer(rectangle); | |
} | |
public CompositePixelBuffer PixelsBuffer { get; } | |
public void Process(Aspose.Imaging.Rectangle pixelsRectangle, int[] pixels, Point start, Point end) | |
{ | |
this.PixelsBuffer.AddPixels(pixelsRectangle, pixels); | |
} | |
} | |
interface IPixelBuffer | |
{ | |
Aspose.Imaging.Rectangle Rectangle { get; } | |
int this[int x, int y] | |
{ | |
get; | |
set; | |
} | |
void SaveToImage(RasterImage image); | |
} | |
class PixelBuffer : IPixelBuffer | |
{ | |
public PixelBuffer(Aspose.Imaging.Rectangle rectangle, int[] pixels) | |
{ | |
this.Rectangle = rectangle; | |
this.Pixels = pixels; | |
} | |
public Aspose.Imaging.Rectangle Rectangle { get; } | |
public int[] Pixels { get; } | |
public int this[int x, int y] | |
{ | |
get => this.Pixels[this.GetIndex(x, y)]; | |
set => this.Pixels[this.GetIndex(x, y)] = value; | |
} | |
public void SaveToImage(RasterImage image) | |
{ | |
image.SaveArgb32Pixels(this.Rectangle, this.Pixels); | |
} | |
public bool Contains(int x, int y) | |
{ | |
return this.Rectangle.Contains(x, y); | |
} | |
private int GetIndex(int x, int y) | |
{ | |
x -= this.Rectangle.Left; | |
y -= this.Rectangle.Top; | |
return x + y * this.Rectangle.Width; | |
} | |
} | |
class CompositePixelBuffer : IPixelBuffer | |
{ | |
private readonly List<PixelBuffer> _buffers = new List<PixelBuffer>(); | |
public CompositePixelBuffer(Aspose.Imaging.Rectangle rectangle) | |
{ | |
this.Rectangle = rectangle; | |
} | |
public Aspose.Imaging.Rectangle Rectangle { get; } | |
public int this[int x, int y] | |
{ | |
get => this.GetBuffer(x, y)[x, y]; | |
set => this.GetBuffer(x, y)[x, y] = value; | |
} | |
public void SaveToImage(RasterImage image) | |
{ | |
foreach (var pixelBuffer in this._buffers) | |
{ | |
pixelBuffer.SaveToImage(image); | |
} | |
} | |
public IEnumerable<PixelBuffer> Buffers => this._buffers; | |
public void AddPixels(Aspose.Imaging.Rectangle rectangle, int[] pixels) | |
{ | |
if (this.Rectangle.IntersectsWith(rectangle)) | |
{ | |
this._buffers.Add(new PixelBuffer(rectangle, pixels)); | |
} | |
} | |
private PixelBuffer GetBuffer(int x, int y) | |
{ | |
return this._buffers.First(b => b.Contains(x, y)); | |
} | |
} |
O Aspose.Imaging pro Python API
Aspose.Imaging API je řešení pro zpracování obrázků pro vytváření, úpravu, kreslení nebo konverzi obrázků (fotografií) v rámci aplikací. Nabízí: multiplatformní zpracování obrazu, mimo jiné včetně převodů mezi různými formáty obrázků (včetně jednotného vícestránkového nebo vícesnímkového zpracování obrazu), úpravy jako kreslení, práci s grafickými primitivy, transformace (změna velikosti, oříznutí, převrácení a otočení). binarizace, stupně šedi, úprava), pokročilé funkce pro manipulaci s obrázky (filtrování, rozklad, maskování, vyrovnání sklonu) a strategie optimalizace paměti. Je to samostatná knihovna a není závislá na žádném softwaru pro operace s obrázky. V rámci projektů lze snadno přidat vysoce výkonné funkce pro konverzi obrázků s nativními rozhraními API. Jedná se o 100% soukromá on-premise API a obrázky se zpracovávají na vašich serverech.Kreslená pohádka DICOMs prostřednictvím online aplikace
Kreslená pohádka DICOM dokumenty na našem webu s živými ukázkami . Živé demo má následující výhody
DICOM co je DICOM Formát souboru
DICOM je zkratka pro Digital Imaging and Communications in Medicine a týká se oblasti lékařské informatiky. DICOM je kombinací definice formátu souboru a síťového komunikačního protokolu. DICOM používá příponu .DCM. .DCM existuje ve dvou různých formátech, tj. formátu 1.xa formátu 2.x. DCM Format 1.x je dále k dispozici ve dvou verzích normální a rozšířené. DICOM se používá pro integraci lékařských zobrazovacích zařízení, jako jsou tiskárny, servery, skenery atd. od různých dodavatelů a také obsahuje identifikační údaje každého pacienta pro jedinečnost. Soubory DICOM lze sdílet mezi dvěma stranami, pokud jsou schopny přijímat obrazová data ve formátu DICOM. Komunikační částí DICOM je protokol aplikační vrstvy a ke komunikaci mezi entitami využívá TCP/IP. Pro webové služby DICOM se používají protokoly HTTP a HTTPS. Verze podporované webovými službami jsou 1.0, 1.1, 2 nebo novější.
Přečtěte si víceDalší podporované formáty Kreslená pohádka
Pomocí Python lze snadno kreslit různé formáty včetně.