PPTX DOCX XLSX PDF ODP
Aspose.Imaging  untuk Java
WMZ

Membuat kartun WMZ melalui Java

Buat aplikasi Java Anda sendiri untuk membuat file Cartoonify WMZ menggunakan API sisi server.

Cara Membuat Kartun File WMZ Menggunakan Java

Efek kartun memiliki daya tarik yang melekat, sering kali membangkitkan kenangan masa kecil yang penuh nostalgia. Hampir setiap artikel desain grafis mengintegrasikan gambar kartun sebagai elemen penting. Membuat kartun potret, menyempurnakan pencahayaan, mengonversi menjadi hitam putih, bereksperimen dengan warna, memadukan berbagai teknik pengeditan, dan membuat efek gambar canggih semuanya dapat dicapai melalui filter gambar seperti AdjustBrightness, BinarizeFixed, Filter, ReplaceColor, dan ApplyMask. Filter ini dapat diterapkan pada foto asli yang dimuat. Apa pun subjek laman web Anda, gambar bergaya Kartun terbukti cocok untuk tujuan ilustrasi. Artikel ilmiah memperoleh semangat, sementara konten yang beragam menjadi lebih menarik bagi pengguna, sehingga meningkatkan lalu lintas situs web. Untuk membuat Kartun file WMZ, kami akan menggunakan Aspose.Imaging for Java API yang kaya fitur, kuat dan mudah digunakan manipulasi gambar dan konversi API untuk platform Java. Anda dapat mengunduh versi terbarunya langsung dari Maven dan instal dalam proyek berbasis Maven Anda dengan menambahkan konfigurasi berikut ke pom.xml.

Repository

<repository>
<id>AsposeJavaAPI</id>
<name>Aspose Java API</name>
<url>https://repository.aspose.com/repo/</url>
</repository>

Ketergantungan

<dependency>
<groupId>com.aspose</groupId>
<artifactId>aspose-imaging</artifactId>
<version>version of aspose-imaging API</version>
<classifier>jdk16</classifier>
</dependency>

Langkah-langkah untuk Membuat Kartun WMZ melalui Java

Anda membutuhkan aspose-imaging-version-jdk16.jar untuk mencoba alur kerja berikut di lingkungan Anda sendiri.

  • Muat file WMZ dengan metode Image.Load
  • Gambar kartun;
  • Simpan gambar terkompresi ke disk dalam format yang didukung oleh Aspose.Imaging

Persyaratan sistem

Aspose.Imaging untuk Java didukung di semua sistem operasi utama. Pastikan saja Anda memiliki prasyarat berikut.

  • JDK 1.6 atau lebih tinggi diinstal.
 

Gambar kartun WMZ - Java

import com.aspose.imaging.*;
import com.aspose.imaging.fileformats.png.PngImage;
import com.aspose.imaging.imagefilters.filteroptions.FilterOptionsBase;
import com.aspose.imaging.imagefilters.filteroptions.MedianFilterOptions;
import com.aspose.imaging.imageoptions.PngOptions;
import com.aspose.imaging.masking.ImageMasking;
import com.aspose.imaging.masking.options.MaskingOptions;
import java.io.File;
import java.util.*;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.stream.Collectors;
cartoonify();
public static void cartoonify()
{
filterImages(image ->
{
try (PngImage processedImage = new PngImage(image))
{
image.resize(image.getWidth() * 2, image.getHeight(), ResizeType.LeftTopToLeftTop);
ImageFilterExtensions.cartoonify(processedImage);
Graphics gr = new Graphics(image);
gr.drawImage(processedImage, processedImage.getWidth(), 0);
gr.drawLine(new Pen(Color.getDarkRed(), 3), processedImage.getWidth(), 0, processedImage.getWidth(), image.getHeight());
}
}, "cartoonify");
}
static String templatesFolder = "D:\\TestData\\";
public static void filterImages(Consumer<RasterImage> doFilter, String filterName)
{
List<String> rasterFormats = Arrays.asList("jpg", "png", "bmp", "apng", "dicom",
"jp2", "j2k", "tga", "webp", "tif", "gif", "ico");
List<String> vectorFormats = Arrays.asList("svg", "otg", "odg", "eps", "wmf", "emf", "wmz", "emz", "cmx", "cdr");
List<String> allFormats = new LinkedList<>(rasterFormats);
allFormats.addAll(vectorFormats);
allFormats.forEach(
formatExt ->
{
String inputFile = templatesFolder + "template." + formatExt;
boolean isVectorFormat = vectorFormats.contains(formatExt);
//Need to rasterize vector formats before background remove
if (isVectorFormat)
{
inputFile = rasterizeVectorImage(formatExt, inputFile);
}
String outputFile = templatesFolder + String.format("%s_%s.png", filterName, formatExt);
System.out.println("Processing " + formatExt);
try (RasterImage image = (RasterImage) Image.load(inputFile))
{
doFilter.accept(image);
//If image is multipage save each page to png to demonstrate results
if (image instanceof IMultipageImage && ((IMultipageImage) image).getPageCount() > 1)
{
IMultipageImage multiPage = (IMultipageImage) image;
final int pageCount = multiPage.getPageCount();
final Image[] pages = multiPage.getPages();
for (int pageIndex = 0; pageIndex < pageCount; pageIndex++)
{
String fileName = String.format("%s_page%d_%s.png", filterName, pageIndex, formatExt);
pages[pageIndex].save(fileName, new PngOptions());
}
}
else
{
image.save(outputFile, new PngOptions());
}
}
//Remove rasterized vector image
if (isVectorFormat)
{
new File(inputFile).delete();
}
}
);
}
private static String rasterizeVectorImage(String formatExt, String inputFile)
{
String outputFile = templatesFolder + "rasterized." + formatExt + ".png";
try (Image image = Image.load(inputFile))
{
image.save(outputFile, new PngOptions());
}
return outputFile;
}
interface IImageDataContext
{
void applyData();
}
class ImageFilterExtensions
{
public static void cartoonify(RasterImage image)
{
try (RasterImage outlines = detectOutlines(image, Color.getBlack()))
{
image.adjustBrightness(30);
image.filter(image.getBounds(), new MedianFilterOptions(7));
Graphics gr = new Graphics(image);
gr.drawImage(outlines, Point.getEmpty());
}
}
public static RasterImage detectOutlines(RasterImage image, Color outlineColor)
{
PngImage outlines = new PngImage(image);
IImageDataContext ctx = getDataContext(outlines);
applyConvolutionFilter(ctx, ConvolutionFilterOptions.getBlur());
applyConvolutionFilter(ctx, ConvolutionFilterOptions.getOutline());
ctx.applyData();
outlines.binarizeFixed((byte)30);
ImageMasking.applyMask(outlines, outlines, new MaskingOptions()
{{
setBackgroundReplacementColor(Color.getTransparent());
}});
outlines.replaceColor(Color.fromArgb(255, 255, 255), (byte)0, outlineColor);
applyConvolutionFilter(outlines, ConvolutionFilterOptions.getBlur());
return outlines;
}
public static RasterImage applyOperationToRasterImage(RasterImage image, Consumer<RasterImage> operation)
{
if (image instanceof IMultipageImage)
{
IMultipageImage multipage = (IMultipageImage) image;
for (Image page : multipage.getPages())
{
operation.accept((RasterImage) page);
}
}
else
{
operation.accept(image);
}
return image;
}
public static RasterImage applyFilter(RasterImage image, FilterOptionsBase filterOptions)
{
return applyOperationToRasterImage(image, img ->
img.filter(img.getBounds(), filterOptions));
}
public static RasterImage applyConvolutionFilter(RasterImage image, ConvolutionFilterOptions filterOptions)
{
return applyOperationToRasterImage(image, img ->
{
ImagePixelsLoader pixelsLoader = new ImagePixelsLoader(img.getBounds());
img.loadPartialArgb32Pixels(img.getBounds(), pixelsLoader);
PixelBuffer outBuffer = new PixelBuffer(img.getBounds(), new int[img.getWidth() * img.getHeight()]);
ConvolutionFilter.doFiltering(pixelsLoader.getPixelsBuffer(), outBuffer, filterOptions);
img.saveArgb32Pixels(outBuffer.getRectangle(), outBuffer.getPixels());
});
}
public static IImageDataContext getDataContext(RasterImage image)
{
if (image instanceof IMultipageImage)
{
return new MultipageDataContext(
Arrays.stream(((IMultipageImage)image).getPages()).map(page -> {
ImageDataContext buf = new ImageDataContext((RasterImage) page);
buf.setBuffer(getImageBuffer((RasterImage)page));
return buf;
}).collect(Collectors.toList()));
}
ImageDataContext buf = new ImageDataContext(image);
buf.setBuffer(getImageBuffer(image));
return buf;
}
static IPixelBuffer getImageBuffer(RasterImage img)
{
ImagePixelsLoader pixelsLoader = new ImagePixelsLoader(img.getBounds());
img.loadPartialArgb32Pixels(img.getBounds(), pixelsLoader);
return pixelsLoader.getPixelsBuffer();
}
public static IImageDataContext applyToDataContext(IImageDataContext dataContext,
Function<IPixelBuffer, IPixelBuffer> processor)
{
if (dataContext instanceof MultipageDataContext)
{
for (ImageDataContext context : (MultipageDataContext) dataContext)
{
context.setBuffer(processor.apply(context.getBuffer()));
}
}
if (dataContext instanceof ImageDataContext)
{
ImageDataContext ctx = (ImageDataContext)dataContext;
ctx.setBuffer(processor.apply(ctx.getBuffer()));
}
return dataContext;
}
public static IImageDataContext applyConvolutionFilter(IImageDataContext dataContext,
ConvolutionFilterOptions filterOptions)
{
return applyToDataContext(dataContext, buffer ->
{
PixelBuffer outBuffer = new PixelBuffer(buffer.getRectangle(), new int[buffer.getRectangle().getWidth() * buffer.getRectangle().getHeight()]);
ConvolutionFilter.doFiltering(buffer, outBuffer, filterOptions);
return outBuffer;
});
}
}
class ImageDataContext implements IImageDataContext
{
private final RasterImage image;
private IPixelBuffer buffer;
public ImageDataContext(RasterImage image)
{
this.image = image;
}
public RasterImage getImage()
{
return image;
}
public IPixelBuffer getBuffer()
{
return buffer;
}
public void setBuffer(IPixelBuffer buffer)
{
this.buffer = buffer;
}
public void applyData()
{
this.buffer.saveToImage(this.image);
}
}
class MultipageDataContext extends LinkedList<ImageDataContext> implements IImageDataContext
{
public MultipageDataContext(Collection<ImageDataContext> enumerable)
{
addAll(enumerable);
}
public void applyData()
{
for (ImageDataContext context : this)
{
context.applyData();
}
}
}
class ImagePixelsLoader implements IPartialArgb32PixelLoader
{
private final CompositePixelBuffer pixelsBuffer;
public ImagePixelsLoader(Rectangle rectangle)
{
this.pixelsBuffer = new CompositePixelBuffer(rectangle);
}
public CompositePixelBuffer getPixelsBuffer()
{
return pixelsBuffer;
}
@Override
public void process(Rectangle pixelsRectangle, int[] pixels, Point start, Point end)
{
this.pixelsBuffer.addPixels(pixelsRectangle,pixels);
}
}
interface IPixelBuffer
{
Rectangle getRectangle();
int get(int x, int y);
void set(int x, int y, int value);
void saveToImage(RasterImage image);
}
class PixelBuffer implements IPixelBuffer
{
private final Rectangle rectangle;
private final int[] pixels;
public PixelBuffer(Rectangle rectangle,int[] pixels)
{
this.rectangle = rectangle;
this.pixels = pixels;
}
@Override
public com.aspose.imaging.Rectangle getRectangle()
{
return rectangle;
}
public int[] getPixels()
{
return pixels;
}
@Override
public int get(int x, int y)
{
return pixels[getIndex(x,y)];
}
@Override
public void set(int x, int y, int value)
{
pixels[getIndex(x,y)] = value;
}
public void saveToImage(RasterImage image)
{
image.saveArgb32Pixels(this.rectangle, this.pixels);
}
public boolean contains(int x,int y)
{
return this.rectangle.contains(x,y);
}
private int getIndex(int x,int y)
{
x -= this.rectangle.getLeft();
y -= this.rectangle.getTop();
return x + y * this.rectangle.getWidth();
}
}
class CompositePixelBuffer implements IPixelBuffer
{
private final List<PixelBuffer> _buffers = new ArrayList<>();
private final Rectangle rectangle;
public CompositePixelBuffer(Rectangle rectangle)
{
this.rectangle = rectangle;
}
@Override
public com.aspose.imaging.Rectangle getRectangle()
{
return rectangle;
}
@Override
public int get(int x, int y)
{
return getBuffer(x,y).get(x, y);
}
@Override
public void set(int x, int y, int value)
{
getBuffer(x, y).set(x, y, value);
}
@Override
public void saveToImage(RasterImage image)
{
for (PixelBuffer buffer : this._buffers)
{
buffer.saveToImage(image);
}
}
public void addPixels(Rectangle rectangle,int[] pixels)
{
if(rectangle.intersectsWith(rectangle))
{
this._buffers.add(new PixelBuffer(rectangle,pixels));
}
}
private PixelBuffer getBuffer(int x,int y)
{
return this._buffers.stream().filter(b -> b.contains(x,y)).findFirst().get();
}
}
class ConvolutionFilter
{
public static void doFiltering(
IPixelBuffer inputBuffer,
IPixelBuffer outputBuffer,
ConvolutionFilterOptions options)
{
double factor = options.getFactor();
int bias = options.getBias();
double[][] kernel = options.getKernel();
int filterWidth = kernel[0].length;
int filterCenter = (filterWidth - 1) / 2;
int x, y;
int filterX, filterY, filterPx, filterPy, filterYPos, pixel;
double r, g, b, kernelValue;
int top = inputBuffer.getRectangle().getTop();
int bottom = inputBuffer.getRectangle().getBottom();
int left = inputBuffer.getRectangle().getLeft();
int right = inputBuffer.getRectangle().getRight();
for (y = top; y < bottom; y++)
{
for (x = left; x < right; x++)
{
r = 0;
g = 0;
b = 0;
for (filterY = -filterCenter; filterY <= filterCenter; filterY++)
{
filterYPos = filterY + filterCenter;
filterPy = filterY + y;
if (filterPy >= top && filterPy < bottom)
{
for (filterX = -filterCenter; filterX <= filterCenter; filterX++)
{
filterPx = filterX + x;
if (filterPx >= left && filterPx < right)
{
kernelValue = kernel[filterYPos][filterX + filterCenter];
pixel = inputBuffer.get(filterPx, filterPy);
r += ((pixel >> 16) & 0xFF) * kernelValue;
g += ((pixel >> 8) & 0xFF) * kernelValue;
b += (pixel & 0xFF) * kernelValue;
}
}
}
}
r = (factor * r) + bias;
g = (factor * g) + bias;
b = (factor * b) + bias;
r = r > 255 ? 255 : (r < 0 ? 0 : r);
g = g > 255 ? 255 : (g < 0 ? 0 : g);
b = b > 255 ? 255 : (b < 0 ? 0 : b);
outputBuffer.set(x, y, (inputBuffer.get(x, y) & 0xFF000000) | ((int)r << 16) | ((int)g << 8) | (int)b);
}
}
}
}
class ConvolutionFilterOptions
{
private double factor = 1.0;
public double getFactor()
{
return factor;
}
public void setFactor(double factor)
{
this.factor = factor;
}
private int bias = 0;
public int getBias()
{
return bias;
}
public void setBias(int bias)
{
this.bias = bias;
}
private double[][] kernel;
public double[][] getKernel()
{
return kernel;
}
public void setKernel(double[][] kernel)
{
this.kernel = kernel;
}
public ConvolutionFilterOptions()
{
}
public ConvolutionFilterOptions(double[][] kernel)
{
this.kernel = kernel;
}
public static ConvolutionFilterOptions getBlur()
{
ConvolutionFilterOptions filterOptions = new ConvolutionFilterOptions();
filterOptions.setKernel(new double[][] { { 1, 2, 1 }, { 2, 4, 2 }, { 1, 2, 1 } });
filterOptions.setFactor(0.25 * 0.25);
return filterOptions;
}
public static ConvolutionFilterOptions getSharpen()
{
return new ConvolutionFilterOptions(new double[][] { { 0, -1, 0 }, { -1, 5, -1 }, { 0, -1, 0 } });
}
public static ConvolutionFilterOptions getEmboss()
{
return new ConvolutionFilterOptions(new double[][] { { -2, -1, 0 }, { -1, 1, 1 }, { 0, 1, 2 } });
}
public static ConvolutionFilterOptions getOutline()
{
return new ConvolutionFilterOptions(new double[][] { { -1, -1, -1 }, { -1, 8, -1 }, { -1, -1, -1 } });
}
public static ConvolutionFilterOptions getBottomSobel()
{
return new ConvolutionFilterOptions(new double[][] { { -1, -2, -1 }, { 0, 0, 0 }, { 1, 2, 1 } });
}
public static ConvolutionFilterOptions getTopSobel()
{
return new ConvolutionFilterOptions(new double[][] { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } });
}
public static ConvolutionFilterOptions getLeftSobel()
{
return new ConvolutionFilterOptions(new double[][] { { 1, 0, -1 }, { 2, 0, -2 }, { 1, 0, -1 } });
}
public static ConvolutionFilterOptions getRightSobel()
{
return new ConvolutionFilterOptions(new double[][] { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } });
}
}
 
  • Tentang Aspose.Imaging untuk Java API

    Aspose.Imaging API adalah solusi pemrosesan gambar untuk membuat, memodifikasi, menggambar, atau mengonversi gambar (foto) dalam aplikasi. Menawarkan: pemrosesan gambar lintas platform, termasuk tetapi tidak terbatas pada konversi antara berbagai format gambar (termasuk pemrosesan gambar multi-halaman atau multi-bingkai yang seragam), modifikasi seperti menggambar, bekerja dengan grafik primitif, transformasi (mengubah ukuran, memotong, membalik & memutar , binarisasi, skala abu-abu, sesuaikan), fitur manipulasi gambar lanjutan (pemfilteran, dithering, masking, deskewing), dan strategi pengoptimalan memori. Ini adalah perpustakaan mandiri dan tidak bergantung pada perangkat lunak apa pun untuk operasi gambar. Seseorang dapat dengan mudah menambahkan fitur konversi gambar berkinerja tinggi dengan API asli dalam proyek. Ini adalah 100% API lokal pribadi dan gambar diproses di server Anda.

    Cartoonify WMZ melalui Aplikasi Online

    Buat kartun WMZ dokumen dengan mengunjungi situs web Live Demos . Demo langsung memiliki manfaat sebagai berikut

      Tidak perlu mengunduh atau mengatur apa pun
      Tidak perlu menulis kode apa pun
      Cukup unggah file WMZ Anda dan tekan tombol "Cartoonify now"
      Langsung dapatkan tautan unduhan untuk file yang dihasilkan

    WMZ Apa WMZ Format Berkas

    WMZ adalah ekstensi file untuk format file kulit di/untuk/digunakan oleh Windows Media Player. File WMZ pada dasarnya adalah file WMF zip dalam XML.

    Baca selengkapnya

    Format Cartoonify Lainnya yang Didukung

    Menggunakan Java, seseorang dapat dengan mudah membuat kartun berbagai format termasuk.

    APNG (Grafik Jaringan Portabel Animasi)
    BMP (Gambar Bitmap)
    ICO (ikon Windows)
    JPG (Kelompok Ahli Fotografi Bersama)
    JPEG (Kelompok Ahli Fotografi Bersama)
    DIB (Bitmap Independen Perangkat)
    DICOM (Pencitraan & Komunikasi Digital)
    DJVU (Format Grafis)
    DNG (Gambar Kamera Digital)
    EMF (Format Metafile yang Ditingkatkan)
    EMZ (Metafile Terkompresi Windows yang Ditingkatkan)
    GIF (Format Pertukaran Grafis)
    JP2 (JPEG 2000)
    J2K (Gambar Terkompresi Wavelet)
    PNG (Grafik Jaringan Portabel)
    TIFF (Format Gambar yang Ditandai)
    TIF (Format Gambar yang Ditandai)
    WEBP (Gambar Web Raster)
    WMF (Metafile Microsoft Windows)
    TGA (Grafis Targa)
    SVG (Grafik Vektor Skalabel)
    EPS (Bahasa PostScript Terenkapsulasi)
    CDR (Gambar Gambar Vektor)
    CMX (Corel Exchange Gambar)
    OTG (Standar Dokumen Terbuka)
    ODG (Format Undian Apache OpenOffice)