Use Python to Apply Filters for CDR Images
Create Python Apps to Filter CDR Images and Photos via Server APIs
How to Filter CDR Images and Photos with Python
Every well-captured photo carries the potential for improvement, a chance to evolve into something entirely distinct, and emerge as a one-of-a-kind creation. Filters serve as a versatile tool in image and photo enhancement, allowing you to selectively enhance sharpness, introduce blur, or eliminate color artifacts for a truly distinctive result. Experiment with image effects individually or in combination to seamlessly blend color gradients, eliminate undesired noise, and enhance the sharpness of object edges in your photo. To apply these image filters to CDR files, we’ll be utilizing Aspose.Imaging for Python via .NET API which is a feature-rich, powerful and easy to use image manipulation and conversion API for Python platform. You may install it using the following command from your system command.
The system command line
>> pip install aspose-imaging-python-net
Steps to Filter CDR via Python
You need the aspose-imaging-python-net to try the following workflow in your own environment.
- load CDR files with Image.Load method;
- filter image;
- save filtered image to disc in the supported by Aspose.Imaging format.
System Requirements
Aspose.Imaging for Python is supported on all major operating systems. Just make sure that you have the following prerequisites.
- Microsoft Windows / Linux with .NET Core Runtime.
- Python and PyPi package manager.
Filter CDR images - Python
from aspose.imaging import RasterImage, Image, IMultipageImage, Rectangle | |
from aspose.imaging.imagefilters.filteroptions import * | |
from aspose.imaging.imageoptions import PngOptions | |
from aspose.pycore import as_of, is_assignable | |
import os | |
if 'TEMPLATE_DIR' in os.environ: | |
templates_folder = os.environ['TEMPLATE_DIR'] | |
else: | |
templates_folder = r"C:\Users\USER\Downloads\templates" | |
delete_output = 'SAVE_OUTPUT' not in os.environ | |
def delete_file(file): | |
if delete_output: | |
os.remove(file) | |
def small_rectangular_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), SmallRectangularFilterOptions()), "smallrectangular") | |
def big_rectangular_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), BigRectangularFilterOptions()), "bigrectangular") | |
def sharpen_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), SharpenFilterOptions()), "sharpen") | |
def motion_wiener_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), MotionWienerFilterOptions(20, 2, 0)), "motionwiener") | |
def bilateral_smoothing_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), BilateralSmoothingFilterOptions()), "bilateralsmoothing") | |
def gauss_blur_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), GaussianBlurFilterOptions(5, 4)), "gaussblur") | |
def gauss_wiener_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), GaussWienerFilterOptions(5, 5)), "gausswiener") | |
def median_filter(): | |
filter_images(lambda image: image.filter(Rectangle(image.width // 6, image.height // 6, image.width * 2 // 3, image.height * 2 // 3), MedianFilterOptions(20)), "median") | |
def filter_images(do_filter, filter_name): | |
obj_init = [] | |
obj_init.append("jpg") | |
obj_init.append("png") | |
obj_init.append("bmp") | |
obj_init.append("apng") | |
obj_init.append("dicom") | |
obj_init.append("jp2") | |
obj_init.append("j2k") | |
obj_init.append("tga") | |
obj_init.append("webp") | |
obj_init.append("tiff") | |
obj_init.append("gif") | |
obj_init.append("ico") | |
raster_formats = obj_init | |
obj_init2 = [] | |
obj_init2.append("svg") | |
obj_init2.append("otg") | |
obj_init2.append("odg") | |
obj_init2.append("eps") | |
obj_init2.append("wmf") | |
obj_init2.append("emf") | |
obj_init2.append("wmz") | |
obj_init2.append("emz") | |
obj_init2.append("cmx") | |
obj_init2.append("cdr") | |
vector_formats = obj_init2 | |
all_formats = raster_formats | |
all_formats.extend(vector_formats) | |
for format_ext in all_formats: | |
input_file = os.path.join(templates_folder, f"template.{format_ext}") | |
is_vector_format = format_ext in vector_formats | |
if is_vector_format: | |
input_file = rasterize_vector_image(format_ext, input_file) | |
output_file = os.path.join(templates_folder, f"{filter_name}_{format_ext}.png") | |
print(format_ext) | |
# explicit type casting from Image to RasterImage | |
with as_of(Image.load(input_file), RasterImage) as image: | |
multi_page = None | |
# if image implements an IMultipageImage interface | |
if is_assignable(image, IMultipageImage): | |
multi_page = as_of(image, IMultipageImage) | |
if multi_page is not None and multi_page.page_count > 1: | |
page_index = 0 | |
for page in multi_page.pages: | |
file_name = f"{filter_name}_page{page_index}_{format_ext}.png" | |
do_filter(as_of(page, RasterImage)) | |
page.save(templates_folder + file_name, PngOptions()) | |
delete_file(templates_folder + file_name) | |
page_index += 1 | |
else: | |
do_filter(image) | |
image.save(output_file, PngOptions()) | |
delete_file(output_file) | |
if is_vector_format: | |
delete_file(input_file) | |
def rasterize_vector_image(format_ext, input_file): | |
output_file = os.path.join(templates_folder, "rasterized.{format_ext}.png") | |
with Image.load(input_file) as image: | |
image.save(output_file, PngOptions()) | |
return output_file | |
# run | |
median_filter() | |
About Aspose.Imaging for Python API
Aspose.Imaging API is an image processing solution to create, modify, draw or convert images (photos) within applications. It offers: cross-platform Image processing, including but not limited to conversions between various image formats (including uniform multi-page or multi-frame image processing), modifications such as drawing, working with graphic primitives, transformations (resize, crop, flip&rotate, binarization, grayscale, adjust), advanced image manipulation features (filtering, dithering, masking, deskewing), and memory optimization strategies. It’s a standalone library and does not depend on any software for image operations. One can easily add high-performance image conversion features with native APIs within projects. These are 100% private on-premise APIs and images are processed at your servers.Filter CDR via Online App
Filter CDR documents by visiting our Live Demos website The live demo has the following benefits
CDR What is CDR File Format
A CDR file is a vector drawing image file that is natively created with CorelDRAW for storing digital image encoded and compressed. Such a drawing file contains text, lines, shapes, images, colours and effects for vector representation of image contents. CDR files can be opened with CorelDRAW as the primary application and can also be converted to other formats such as PDF, JPG, PNG, BMP and AI. It can be used for representation of various graphics data like brochures, tabloids, envelopes, and postcards. Besides CorelDRAW, other Corel products such as Corel Paintshop Pro and CorelDRAW Graphics suite can also open the CDR file formats.
Read MoreOther Supported Filter Formats
Using Python, one can easily Filter different formats including: