通過 Java 對 DICOM 進行卡通化
使用服務器端 API 構建您自己的 Java 應用程序來卡通化 DICOM 文件。
如何使用 Java 將 DICOM 文件卡通化
卡通效果具有固有的吸引力,常常喚起懷舊的童年記憶。幾乎每一篇平面設計文章都將卡通圖像作為基本元素。卡通化肖像、微調燈光、轉換為黑白、嘗試顏色、混合各種編輯技術以及製作複雜的圖像效果都可以通過圖像濾鏡(例如AdjustBrightness、BinarizeFixed、Filter、ReplaceColor 和ApplyMask)來實現。這些濾鏡可以應用於原始加載的照片。無論您的網頁主題是什麼,卡通風格的圖像都適合用於插圖目的。科學文章變得充滿活力,而多樣化的內容對用戶更具吸引力,從而提高網站流量。為了卡通化 DICOM 文件,我們將使用 Aspose.Imaging for Java API 是一個功能豐富、功能強大 易於使用的 Java 平台圖像處理和轉換 API。您可以直接從 Maven 並通過將以下配置添加到 pom.xml 將其安裝在基於 Maven 的項目中。
Repository
<repository>
<id>AsposeJavaAPI</id>
<name>Aspose Java API</name>
<url>https://repository.aspose.com/repo/</url>
</repository>
Dependency
<dependency>
<groupId>com.aspose</groupId>
<artifactId>aspose-imaging</artifactId>
<version>version of aspose-imaging API</version>
<classifier>jdk16</classifier>
</dependency>
通過 Java 對 DICOM 進行卡通化的步驟
你需要 aspose-imaging-version-jdk16.jar 在您自己的環境中嘗試以下工作流程。
- 使用 Image.Load 方法加載 DICOM 文件 +卡通化圖像;
- 以 Aspose.Imaging 支持的格式將壓縮圖像保存到光盤
系統要求
所有主要操作系統都支持 Java 的 Aspose.Imaging。只需確保您具有以下先決條件。
- 已安裝 JDK 1.6 或更高版本。
Cartoonify DICOM 圖像 - Java
import com.aspose.imaging.*; | |
import com.aspose.imaging.fileformats.png.PngImage; | |
import com.aspose.imaging.imagefilters.filteroptions.FilterOptionsBase; | |
import com.aspose.imaging.imagefilters.filteroptions.MedianFilterOptions; | |
import com.aspose.imaging.imageoptions.PngOptions; | |
import com.aspose.imaging.masking.ImageMasking; | |
import com.aspose.imaging.masking.options.MaskingOptions; | |
import java.io.File; | |
import java.util.*; | |
import java.util.function.Consumer; | |
import java.util.function.Function; | |
import java.util.stream.Collectors; | |
cartoonify(); | |
public static void cartoonify() | |
{ | |
filterImages(image -> | |
{ | |
try (PngImage processedImage = new PngImage(image)) | |
{ | |
image.resize(image.getWidth() * 2, image.getHeight(), ResizeType.LeftTopToLeftTop); | |
ImageFilterExtensions.cartoonify(processedImage); | |
Graphics gr = new Graphics(image); | |
gr.drawImage(processedImage, processedImage.getWidth(), 0); | |
gr.drawLine(new Pen(Color.getDarkRed(), 3), processedImage.getWidth(), 0, processedImage.getWidth(), image.getHeight()); | |
} | |
}, "cartoonify"); | |
} | |
static String templatesFolder = "D:\\TestData\\"; | |
public static void filterImages(Consumer<RasterImage> doFilter, String filterName) | |
{ | |
List<String> rasterFormats = Arrays.asList("jpg", "png", "bmp", "apng", "dicom", | |
"jp2", "j2k", "tga", "webp", "tif", "gif", "ico"); | |
List<String> vectorFormats = Arrays.asList("svg", "otg", "odg", "eps", "wmf", "emf", "wmz", "emz", "cmx", "cdr"); | |
List<String> allFormats = new LinkedList<>(rasterFormats); | |
allFormats.addAll(vectorFormats); | |
allFormats.forEach( | |
formatExt -> | |
{ | |
String inputFile = templatesFolder + "template." + formatExt; | |
boolean isVectorFormat = vectorFormats.contains(formatExt); | |
//Need to rasterize vector formats before background remove | |
if (isVectorFormat) | |
{ | |
inputFile = rasterizeVectorImage(formatExt, inputFile); | |
} | |
String outputFile = templatesFolder + String.format("%s_%s.png", filterName, formatExt); | |
System.out.println("Processing " + formatExt); | |
try (RasterImage image = (RasterImage) Image.load(inputFile)) | |
{ | |
doFilter.accept(image); | |
//If image is multipage save each page to png to demonstrate results | |
if (image instanceof IMultipageImage && ((IMultipageImage) image).getPageCount() > 1) | |
{ | |
IMultipageImage multiPage = (IMultipageImage) image; | |
final int pageCount = multiPage.getPageCount(); | |
final Image[] pages = multiPage.getPages(); | |
for (int pageIndex = 0; pageIndex < pageCount; pageIndex++) | |
{ | |
String fileName = String.format("%s_page%d_%s.png", filterName, pageIndex, formatExt); | |
pages[pageIndex].save(fileName, new PngOptions()); | |
} | |
} | |
else | |
{ | |
image.save(outputFile, new PngOptions()); | |
} | |
} | |
//Remove rasterized vector image | |
if (isVectorFormat) | |
{ | |
new File(inputFile).delete(); | |
} | |
} | |
); | |
} | |
private static String rasterizeVectorImage(String formatExt, String inputFile) | |
{ | |
String outputFile = templatesFolder + "rasterized." + formatExt + ".png"; | |
try (Image image = Image.load(inputFile)) | |
{ | |
image.save(outputFile, new PngOptions()); | |
} | |
return outputFile; | |
} | |
interface IImageDataContext | |
{ | |
void applyData(); | |
} | |
class ImageFilterExtensions | |
{ | |
public static void cartoonify(RasterImage image) | |
{ | |
try (RasterImage outlines = detectOutlines(image, Color.getBlack())) | |
{ | |
image.adjustBrightness(30); | |
image.filter(image.getBounds(), new MedianFilterOptions(7)); | |
Graphics gr = new Graphics(image); | |
gr.drawImage(outlines, Point.getEmpty()); | |
} | |
} | |
public static RasterImage detectOutlines(RasterImage image, Color outlineColor) | |
{ | |
PngImage outlines = new PngImage(image); | |
IImageDataContext ctx = getDataContext(outlines); | |
applyConvolutionFilter(ctx, ConvolutionFilterOptions.getBlur()); | |
applyConvolutionFilter(ctx, ConvolutionFilterOptions.getOutline()); | |
ctx.applyData(); | |
outlines.binarizeFixed((byte)30); | |
ImageMasking.applyMask(outlines, outlines, new MaskingOptions() | |
{{ | |
setBackgroundReplacementColor(Color.getTransparent()); | |
}}); | |
outlines.replaceColor(Color.fromArgb(255, 255, 255), (byte)0, outlineColor); | |
applyConvolutionFilter(outlines, ConvolutionFilterOptions.getBlur()); | |
return outlines; | |
} | |
public static RasterImage applyOperationToRasterImage(RasterImage image, Consumer<RasterImage> operation) | |
{ | |
if (image instanceof IMultipageImage) | |
{ | |
IMultipageImage multipage = (IMultipageImage) image; | |
for (Image page : multipage.getPages()) | |
{ | |
operation.accept((RasterImage) page); | |
} | |
} | |
else | |
{ | |
operation.accept(image); | |
} | |
return image; | |
} | |
public static RasterImage applyFilter(RasterImage image, FilterOptionsBase filterOptions) | |
{ | |
return applyOperationToRasterImage(image, img -> | |
img.filter(img.getBounds(), filterOptions)); | |
} | |
public static RasterImage applyConvolutionFilter(RasterImage image, ConvolutionFilterOptions filterOptions) | |
{ | |
return applyOperationToRasterImage(image, img -> | |
{ | |
ImagePixelsLoader pixelsLoader = new ImagePixelsLoader(img.getBounds()); | |
img.loadPartialArgb32Pixels(img.getBounds(), pixelsLoader); | |
PixelBuffer outBuffer = new PixelBuffer(img.getBounds(), new int[img.getWidth() * img.getHeight()]); | |
ConvolutionFilter.doFiltering(pixelsLoader.getPixelsBuffer(), outBuffer, filterOptions); | |
img.saveArgb32Pixels(outBuffer.getRectangle(), outBuffer.getPixels()); | |
}); | |
} | |
public static IImageDataContext getDataContext(RasterImage image) | |
{ | |
if (image instanceof IMultipageImage) | |
{ | |
return new MultipageDataContext( | |
Arrays.stream(((IMultipageImage)image).getPages()).map(page -> { | |
ImageDataContext buf = new ImageDataContext((RasterImage) page); | |
buf.setBuffer(getImageBuffer((RasterImage)page)); | |
return buf; | |
}).collect(Collectors.toList())); | |
} | |
ImageDataContext buf = new ImageDataContext(image); | |
buf.setBuffer(getImageBuffer(image)); | |
return buf; | |
} | |
static IPixelBuffer getImageBuffer(RasterImage img) | |
{ | |
ImagePixelsLoader pixelsLoader = new ImagePixelsLoader(img.getBounds()); | |
img.loadPartialArgb32Pixels(img.getBounds(), pixelsLoader); | |
return pixelsLoader.getPixelsBuffer(); | |
} | |
public static IImageDataContext applyToDataContext(IImageDataContext dataContext, | |
Function<IPixelBuffer, IPixelBuffer> processor) | |
{ | |
if (dataContext instanceof MultipageDataContext) | |
{ | |
for (ImageDataContext context : (MultipageDataContext) dataContext) | |
{ | |
context.setBuffer(processor.apply(context.getBuffer())); | |
} | |
} | |
if (dataContext instanceof ImageDataContext) | |
{ | |
ImageDataContext ctx = (ImageDataContext)dataContext; | |
ctx.setBuffer(processor.apply(ctx.getBuffer())); | |
} | |
return dataContext; | |
} | |
public static IImageDataContext applyConvolutionFilter(IImageDataContext dataContext, | |
ConvolutionFilterOptions filterOptions) | |
{ | |
return applyToDataContext(dataContext, buffer -> | |
{ | |
PixelBuffer outBuffer = new PixelBuffer(buffer.getRectangle(), new int[buffer.getRectangle().getWidth() * buffer.getRectangle().getHeight()]); | |
ConvolutionFilter.doFiltering(buffer, outBuffer, filterOptions); | |
return outBuffer; | |
}); | |
} | |
} | |
class ImageDataContext implements IImageDataContext | |
{ | |
private final RasterImage image; | |
private IPixelBuffer buffer; | |
public ImageDataContext(RasterImage image) | |
{ | |
this.image = image; | |
} | |
public RasterImage getImage() | |
{ | |
return image; | |
} | |
public IPixelBuffer getBuffer() | |
{ | |
return buffer; | |
} | |
public void setBuffer(IPixelBuffer buffer) | |
{ | |
this.buffer = buffer; | |
} | |
public void applyData() | |
{ | |
this.buffer.saveToImage(this.image); | |
} | |
} | |
class MultipageDataContext extends LinkedList<ImageDataContext> implements IImageDataContext | |
{ | |
public MultipageDataContext(Collection<ImageDataContext> enumerable) | |
{ | |
addAll(enumerable); | |
} | |
public void applyData() | |
{ | |
for (ImageDataContext context : this) | |
{ | |
context.applyData(); | |
} | |
} | |
} | |
class ImagePixelsLoader implements IPartialArgb32PixelLoader | |
{ | |
private final CompositePixelBuffer pixelsBuffer; | |
public ImagePixelsLoader(Rectangle rectangle) | |
{ | |
this.pixelsBuffer = new CompositePixelBuffer(rectangle); | |
} | |
public CompositePixelBuffer getPixelsBuffer() | |
{ | |
return pixelsBuffer; | |
} | |
@Override | |
public void process(Rectangle pixelsRectangle, int[] pixels, Point start, Point end) | |
{ | |
this.pixelsBuffer.addPixels(pixelsRectangle,pixels); | |
} | |
} | |
interface IPixelBuffer | |
{ | |
Rectangle getRectangle(); | |
int get(int x, int y); | |
void set(int x, int y, int value); | |
void saveToImage(RasterImage image); | |
} | |
class PixelBuffer implements IPixelBuffer | |
{ | |
private final Rectangle rectangle; | |
private final int[] pixels; | |
public PixelBuffer(Rectangle rectangle,int[] pixels) | |
{ | |
this.rectangle = rectangle; | |
this.pixels = pixels; | |
} | |
@Override | |
public com.aspose.imaging.Rectangle getRectangle() | |
{ | |
return rectangle; | |
} | |
public int[] getPixels() | |
{ | |
return pixels; | |
} | |
@Override | |
public int get(int x, int y) | |
{ | |
return pixels[getIndex(x,y)]; | |
} | |
@Override | |
public void set(int x, int y, int value) | |
{ | |
pixels[getIndex(x,y)] = value; | |
} | |
public void saveToImage(RasterImage image) | |
{ | |
image.saveArgb32Pixels(this.rectangle, this.pixels); | |
} | |
public boolean contains(int x,int y) | |
{ | |
return this.rectangle.contains(x,y); | |
} | |
private int getIndex(int x,int y) | |
{ | |
x -= this.rectangle.getLeft(); | |
y -= this.rectangle.getTop(); | |
return x + y * this.rectangle.getWidth(); | |
} | |
} | |
class CompositePixelBuffer implements IPixelBuffer | |
{ | |
private final List<PixelBuffer> _buffers = new ArrayList<>(); | |
private final Rectangle rectangle; | |
public CompositePixelBuffer(Rectangle rectangle) | |
{ | |
this.rectangle = rectangle; | |
} | |
@Override | |
public com.aspose.imaging.Rectangle getRectangle() | |
{ | |
return rectangle; | |
} | |
@Override | |
public int get(int x, int y) | |
{ | |
return getBuffer(x,y).get(x, y); | |
} | |
@Override | |
public void set(int x, int y, int value) | |
{ | |
getBuffer(x, y).set(x, y, value); | |
} | |
@Override | |
public void saveToImage(RasterImage image) | |
{ | |
for (PixelBuffer buffer : this._buffers) | |
{ | |
buffer.saveToImage(image); | |
} | |
} | |
public void addPixels(Rectangle rectangle,int[] pixels) | |
{ | |
if(rectangle.intersectsWith(rectangle)) | |
{ | |
this._buffers.add(new PixelBuffer(rectangle,pixels)); | |
} | |
} | |
private PixelBuffer getBuffer(int x,int y) | |
{ | |
return this._buffers.stream().filter(b -> b.contains(x,y)).findFirst().get(); | |
} | |
} | |
class ConvolutionFilter | |
{ | |
public static void doFiltering( | |
IPixelBuffer inputBuffer, | |
IPixelBuffer outputBuffer, | |
ConvolutionFilterOptions options) | |
{ | |
double factor = options.getFactor(); | |
int bias = options.getBias(); | |
double[][] kernel = options.getKernel(); | |
int filterWidth = kernel[0].length; | |
int filterCenter = (filterWidth - 1) / 2; | |
int x, y; | |
int filterX, filterY, filterPx, filterPy, filterYPos, pixel; | |
double r, g, b, kernelValue; | |
int top = inputBuffer.getRectangle().getTop(); | |
int bottom = inputBuffer.getRectangle().getBottom(); | |
int left = inputBuffer.getRectangle().getLeft(); | |
int right = inputBuffer.getRectangle().getRight(); | |
for (y = top; y < bottom; y++) | |
{ | |
for (x = left; x < right; x++) | |
{ | |
r = 0; | |
g = 0; | |
b = 0; | |
for (filterY = -filterCenter; filterY <= filterCenter; filterY++) | |
{ | |
filterYPos = filterY + filterCenter; | |
filterPy = filterY + y; | |
if (filterPy >= top && filterPy < bottom) | |
{ | |
for (filterX = -filterCenter; filterX <= filterCenter; filterX++) | |
{ | |
filterPx = filterX + x; | |
if (filterPx >= left && filterPx < right) | |
{ | |
kernelValue = kernel[filterYPos][filterX + filterCenter]; | |
pixel = inputBuffer.get(filterPx, filterPy); | |
r += ((pixel >> 16) & 0xFF) * kernelValue; | |
g += ((pixel >> 8) & 0xFF) * kernelValue; | |
b += (pixel & 0xFF) * kernelValue; | |
} | |
} | |
} | |
} | |
r = (factor * r) + bias; | |
g = (factor * g) + bias; | |
b = (factor * b) + bias; | |
r = r > 255 ? 255 : (r < 0 ? 0 : r); | |
g = g > 255 ? 255 : (g < 0 ? 0 : g); | |
b = b > 255 ? 255 : (b < 0 ? 0 : b); | |
outputBuffer.set(x, y, (inputBuffer.get(x, y) & 0xFF000000) | ((int)r << 16) | ((int)g << 8) | (int)b); | |
} | |
} | |
} | |
} | |
class ConvolutionFilterOptions | |
{ | |
private double factor = 1.0; | |
public double getFactor() | |
{ | |
return factor; | |
} | |
public void setFactor(double factor) | |
{ | |
this.factor = factor; | |
} | |
private int bias = 0; | |
public int getBias() | |
{ | |
return bias; | |
} | |
public void setBias(int bias) | |
{ | |
this.bias = bias; | |
} | |
private double[][] kernel; | |
public double[][] getKernel() | |
{ | |
return kernel; | |
} | |
public void setKernel(double[][] kernel) | |
{ | |
this.kernel = kernel; | |
} | |
public ConvolutionFilterOptions() | |
{ | |
} | |
public ConvolutionFilterOptions(double[][] kernel) | |
{ | |
this.kernel = kernel; | |
} | |
public static ConvolutionFilterOptions getBlur() | |
{ | |
ConvolutionFilterOptions filterOptions = new ConvolutionFilterOptions(); | |
filterOptions.setKernel(new double[][] { { 1, 2, 1 }, { 2, 4, 2 }, { 1, 2, 1 } }); | |
filterOptions.setFactor(0.25 * 0.25); | |
return filterOptions; | |
} | |
public static ConvolutionFilterOptions getSharpen() | |
{ | |
return new ConvolutionFilterOptions(new double[][] { { 0, -1, 0 }, { -1, 5, -1 }, { 0, -1, 0 } }); | |
} | |
public static ConvolutionFilterOptions getEmboss() | |
{ | |
return new ConvolutionFilterOptions(new double[][] { { -2, -1, 0 }, { -1, 1, 1 }, { 0, 1, 2 } }); | |
} | |
public static ConvolutionFilterOptions getOutline() | |
{ | |
return new ConvolutionFilterOptions(new double[][] { { -1, -1, -1 }, { -1, 8, -1 }, { -1, -1, -1 } }); | |
} | |
public static ConvolutionFilterOptions getBottomSobel() | |
{ | |
return new ConvolutionFilterOptions(new double[][] { { -1, -2, -1 }, { 0, 0, 0 }, { 1, 2, 1 } }); | |
} | |
public static ConvolutionFilterOptions getTopSobel() | |
{ | |
return new ConvolutionFilterOptions(new double[][] { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } }); | |
} | |
public static ConvolutionFilterOptions getLeftSobel() | |
{ | |
return new ConvolutionFilterOptions(new double[][] { { 1, 0, -1 }, { 2, 0, -2 }, { 1, 0, -1 } }); | |
} | |
public static ConvolutionFilterOptions getRightSobel() | |
{ | |
return new ConvolutionFilterOptions(new double[][] { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } }); | |
} | |
} |
關於 Java API 的 Aspose.Imaging
Aspose.Imaging API 是一種圖像處理解決方案,用於在應用程序中創建、修改、繪製或轉換圖像(照片)。它提供:跨平台的圖像處理,包括但不限於各種圖像格式之間的轉換(包括統一的多頁或多幀圖像處理)、繪圖等修改、使用圖形基元、轉換(調整大小、裁剪、翻轉和旋轉) 、二值化、灰度、調整)、高級圖像處理功能(過濾、抖動、遮罩、去偏斜)和內存優化策略。它是一個獨立的庫,不依賴任何軟件進行圖像操作。可以在項目中使用原生 API 輕鬆添加高性能圖像轉換功能。這些是 100% 私有的本地 API,圖像在您的服務器上處理。通過在線應用程序卡通化 DICOM
通過訪問我們的 Live Demos 網站 對 DICOM 文檔進行卡通化。 現場演示有以下好處
DICOM 什麼是 DICOM 文件格式
DICOM 是 Digital Imaging and Communications in Medicine 的首字母縮寫詞,屬於醫學信息學領域。 DICOM 是文件格式定義和網絡通信協議的結合。 DICOM 使用 .DCM 擴展名。 .DCM 以兩種不同的格式存在,即格式 1.x 和格式 2.x。 DCM Format 1.x 還提供兩個普通版本和擴展版本。 DICOM 用於集成來自不同供應商的打印機、服務器、掃描儀等醫療成像設備,還包含每個患者的唯一識別數據。如果 DICOM 文件能夠接收 DICOM 格式的圖像數據,則它們可以在兩方之間共享。 DICOM的通信部分是應用層協議,實體之間使用TCP/IP進行通信。 HTTP 和 HTTPS 協議用於 DICOM 的 Web 服務。 Web 服務支持的版本是 1.0、1.1、2 或更高版本。
閱讀更多其他支持的卡通化格式
使用 Java,可以輕鬆卡通化不同的格式,包括。