Filter DICOM images via Java
Build your own Java apps to Filter DICOM image files using server-side APIs
How to Filter DICOM Files Using Java
Even the most perfect image can be enhanced further or transformed into a completely different and unique work of art. Apply filters to achieve a wide range of image effects. For instance, you can sharpen an image or, conversely, add a blur, smooth it, or eliminate color noise. Filters are also invaluable when you wish to impart uniqueness to your image. To achieve this, apply the desired effect or combine different effects. This approach allows you to refine color gradients, eliminate noise, and simultaneously enhance the sharpness of objects’ edges in the photo. In order to filter DICOM files, we’ll use Aspose.Imaging for Java API which is a feature-rich, powerful and easy to use image manipulation and conversion API for Java platform. You can download its latest version directly from Maven and install it within your Maven-based project by adding the following configurations to the pom.xml.
Repository
<repository>
<id>AsposeJavaAPI</id>
<name>Aspose Java API</name>
<url>https://repository.aspose.com/repo/</url>
</repository>
Dependency
<dependency>
<groupId>com.aspose</groupId>
<artifactId>aspose-imaging</artifactId>
<version>version of aspose-imaging API</version>
<classifier>jdk16</classifier>
</dependency>
Steps to Filter DICOM via Java
You need the aspose-imaging-version-jdk16.jar to try the following workflow in your own environment.
- load DICOM files with Image.Load method;
- filter image;
- save filtered image to disc in the supported by Aspose.Imaging format.
System Requirements
Aspose.Imaging for Java is supported on all major operating systems. Just make sure that you have the following prerequisites.
- JDK 1.6 or higher is installed.
Filter DICOM images - Java
import com.aspose.imaging.IMultipageImage; | |
import com.aspose.imaging.Image; | |
import com.aspose.imaging.RasterImage; | |
import com.aspose.imaging.imageoptions.PngOptions; | |
import java.io.File; | |
import java.util.Arrays; | |
import java.util.LinkedList; | |
import java.util.List; | |
import java.util.function.Consumer; | |
medianfilter(); | |
public static void smallRectangularfilter() | |
{ | |
filterImages(image -> | |
{ | |
// https://apireference.aspose.com/imaging/java/com.aspose.imaging.imagefilters.filteroptions/SmallRectangularFilterOptions | |
Rectangle filterRect = new Rectangle(image.getWidth() / 6, image.getHeight() / 6, image.getWidth() * 2 / 3, image.getHeight() * 2 / 3); | |
image.filter(filterRect, new SmallRectangularFilterOptions()); | |
}, "smallrectangular"); | |
} | |
public static void bigRectangularfilter() | |
{ | |
filterImages(image -> | |
{ | |
// https://apireference.aspose.com/imaging/java/com.aspose.imaging.imagefilters.filteroptions/BigRectangularFilterOptions | |
Rectangle filterRect = new Rectangle(image.getWidth() / 6, image.getHeight() / 6, image.getWidth() * 2 / 3, image.getHeight() * 2 / 3); | |
image.filter(filterRect, new BigRectangularFilterOptions()); | |
}, "bigrectangular"); | |
} | |
public static void sharpenfilter() | |
{ | |
filterImages(image -> | |
{ | |
// https://apireference.aspose.com/imaging/java/com.aspose.imaging.imagefilters.filteroptions/SharpenFilterOptions | |
Rectangle filterRect = new Rectangle(image.getWidth() / 6, image.getHeight() / 6, image.getWidth() * 2 / 3, image.getHeight() * 2 / 3); | |
image.filter(filterRect, new SharpenFilterOptions()); | |
}, "sharpen"); | |
} | |
public static void motionWienerfilter() | |
{ | |
filterImages(image -> | |
{ | |
// https://apireference.aspose.com/imaging/java/com.aspose.imaging.imagefilters.filteroptions/MotionWienerFilterOptions | |
Rectangle filterRect = new Rectangle(image.getWidth() / 6, image.getHeight() / 6, image.getWidth() * 2 / 3, image.getHeight() * 2 / 3); | |
image.filter(filterRect, new MotionWienerFilterOptions(20, 2, 0)); | |
}, "motionwiener"); | |
} | |
public static void bilateralSmoothingfilter() | |
{ | |
filterImages(image -> | |
{ | |
// https://apireference.aspose.com/imaging/java/com.aspose.imaging.imagefilters.filteroptions/BilateralSmoothingFilterOptions | |
Rectangle filterRect = new Rectangle(image.getWidth() / 6, image.getHeight() / 6, image.getWidth() * 2 / 3, image.getHeight() * 2 / 3); | |
image.filter(filterRect, new BilateralSmoothingFilterOptions()); | |
}, "bilateralsmoothing"); | |
} | |
public static void gaussBlurfilter() | |
{ | |
filterImages(image -> | |
{ | |
// https://apireference.aspose.com/imaging/java/com.aspose.imaging.imagefilters.filteroptions/GaussianBlurFilterOptions | |
Rectangle filterRect = new Rectangle(image.getWidth() / 6, image.getHeight() / 6, image.getWidth() * 2 / 3, image.getHeight() * 2 / 3); | |
image.filter(filterRect, new GaussianBlurFilterOptions(5, 4)); | |
}, "gaussblur"); | |
} | |
public static void gaussWienerfilter() | |
{ | |
filterImages(image -> | |
{ | |
// https://apireference.aspose.com/imaging/java/com.aspose.imaging.imagefilters.filteroptions/GaussWienerFilterOptions | |
Rectangle filterRect = new Rectangle(image.getWidth() / 6, image.getHeight() / 6, image.getWidth() * 2 / 3, image.getHeight() * 2 / 3); | |
image.filter(filterRect, new GaussWienerFilterOptions(5, 5)); | |
}, "gausswiener"); | |
} | |
public static void medianfilter() | |
{ | |
filterImages(image -> | |
{ | |
// https://apireference.aspose.com/imaging/java/com.aspose.imaging.imagefilters.filteroptions/MedianFilterOptions | |
Rectangle filterRect = new Rectangle(image.getWidth() / 6, image.getHeight() / 6, image.getWidth() * 2 / 3, image.getHeight() * 2 / 3); | |
image.filter(filterRect, new MedianFilterOptions(20)); | |
}, "median"); | |
} | |
static String templatesFolder = "D:\\"; | |
public static void filterImages(Consumer<RasterImage> doFilter, String filterName) | |
{ | |
List<String> rasterFormats = Arrays.asList("jpg", "png", "bmp", "apng", "dicom", | |
"jp2", "j2k", "tga", "webp", "tif", "gif", "ico"); | |
List<String> vectorFormats = Arrays.asList("svg", "otg", "odg", "eps", "wmf", "emf", "wmz", "emz", "cmx", "cdr"); | |
List<String> allFormats = new LinkedList<>(rasterFormats); | |
allFormats.addAll(vectorFormats); | |
allFormats.forEach( | |
formatExt -> | |
{ | |
String inputFile = templatesFolder + "template." + formatExt; | |
boolean isVectorFormat = vectorFormats.contains(formatExt); | |
//Need to rasterize vector formats before background remove | |
if (isVectorFormat) | |
{ | |
inputFile = rasterizeVectorImage(formatExt, inputFile); | |
} | |
String outputFile = templatesFolder + String.format("%s_%s.png", filterName, formatExt); | |
System.out.println("Processing " + formatExt); | |
try (RasterImage image = (RasterImage) Image.load(inputFile)) | |
{ | |
doFilter.accept(image); | |
//If image is multipage save each page to png to demonstrate results | |
if (image instanceof IMultipageImage && ((IMultipageImage) image).getPageCount() > 1) | |
{ | |
IMultipageImage multiPage = (IMultipageImage) image; | |
final int pageCount = multiPage.getPageCount(); | |
final Image[] pages = multiPage.getPages(); | |
for (int pageIndex = 0; pageIndex < pageCount; pageIndex++) | |
{ | |
String fileName = String.format("%s_page%d_%s.png", filterName, pageIndex, formatExt); | |
pages[pageIndex].save(fileName, new PngOptions()); | |
} | |
} | |
else | |
{ | |
image.save(outputFile, new PngOptions()); | |
} | |
} | |
//Remove rasterized vector image | |
if (isVectorFormat) | |
{ | |
new File(inputFile).delete(); | |
} | |
} | |
); | |
} | |
private static String rasterizeVectorImage(String formatExt, String inputFile) | |
{ | |
String outputFile = templatesFolder + "rasterized."+ formatExt + ".png"; | |
try (Image image = Image.load(inputFile)) | |
{ | |
image.save(outputFile, new PngOptions()); | |
} | |
return outputFile; | |
} |
About Aspose.Imaging for Java API
Aspose.Imaging API is an image processing solution to create, modify, draw or convert images (photos) within applications. It offers: cross-platform Image processing, including but not limited to conversions between various image formats (including uniform multi-page or multi-frame image processing), modifications such as drawing, working with graphic primitives, transformations (resize, crop, flip&rotate, binarization, grayscale, adjust), advanced image manipulation features (filtering, dithering, masking, deskewing), and memory optimization strategies. It’s a standalone library and does not depend on any software for image operations. One can easily add high-performance image conversion features with native APIs within projects. These are 100% private on-premise APIs and images are processed at your servers.Filter DICOM via Online App
Filter DICOM documents by visiting our Live Demos website The live demo has the following benefits
DICOM What is DICOM File Format
DICOM is the acronym for Digital Imaging and Communications in Medicine and pertains to the field of Medical Informatics. DICOM is the combination of file format definition and a network communications protocol. DICOM uses the .DCM extension. .DCM exist in two different formats i.e. format 1.x and format 2.x. DCM Format 1.x is further available in two versions normal and extended. DICOM is used for the integration of medical imaging devices like printers, servers, scanners etc from various vendors and also contains identification data of each patient for uniqueness. DICOM files can be shared between two parties if they are capable of receiving image data in DICOM format. The communication part of DICOM is application layer protocol and uses TCP/IP to communicate between entities. HTTP and HTTPS protocols are used for the web services of DICOM. Versions supported by web services are 1.0, 1.1, 2 or later.
Read MoreOther Supported Filter Formats
Using Java, one can easily Filter different formats including: