PPTX DOCX XLSX PDF ODP
Aspose.Imaging  voor Java
JP2

Cartoonify JP2s via Java

Bouw je eigen Java-apps voor Cartoonify JP2-bestanden met behulp van server-side API’s.

Cartoonify JP2-bestanden gebruiken met Java

Cartooneffecten hebben een inherente aantrekkingskracht en roepen vaak nostalgische jeugdherinneringen op. Bijna elk grafisch ontwerpartikel integreert cartoonafbeeldingen als een essentieel element. Portretten tekenen, de belichting verfijnen, converteren naar zwart-wit, experimenteren met kleuren, verschillende bewerkingstechnieken mixen en geavanceerde beeldeffecten creëren zijn allemaal mogelijk met beeldfilters zoals AdjustBrightness, BinarizeFixed, Filter, ReplaceColor en ApplyMask. Deze filters kunnen worden toegepast op de origineel geladen foto’s. Ongeacht het onderwerp van uw webpagina, afbeeldingen in Cartoon-stijl zijn geschikt voor illustratiedoeleinden. Een wetenschappelijk artikel krijgt meer levendigheid, terwijl diverse inhoud aantrekkelijker wordt voor gebruikers, waardoor het websiteverkeer toeneemt. Om Cartoonify JP2-bestanden te maken, gebruiken we Aspose.Imaging voor Java API, een veelzijdige, krachtige en gebruiksvriendelijke API voor beeldmanipulatie en conversie voor het Java-platform. U kunt de nieuwste versie rechtstreeks downloaden van Maven en installeer het binnen uw op Maven gebaseerde project door de volgende configuraties toe te voegen aan pom.xml.

Repository

<repository>
<id>AsposeJavaAPI</id>
<name>Java API toewijzen</name>
<url>https://repository.aspose.com/repo/</url>
</repository>

Dependency

<dependency>
<groupId>com.aspose</groupId>
<artifactId>aspose-imaging</artifactId>
<version>version of aspose-imaging API</version>
<classifier>jdk16</classifier>
</dependency>

Stappen voor Cartoonify JP2s via Java

Je hebt de nodig aspose-imaging-version-jdk16.jar om de volgende workflow in uw eigen omgeving te proberen.

  • Laad JP2-bestanden met de methode Image.Load
  • Cartoonify-afbeeldingen;
  • Bewaar gecomprimeerde afbeelding op schijf in het formaat dat wordt ondersteund door Aspose.Imaging

systeem vereisten

Aspose.Imaging voor Java wordt ondersteund op alle belangrijke besturingssystemen. Zorg ervoor dat u aan de volgende vereisten voldoet.

  • JDK 1.6 of hoger is geïnstalleerd.
 

Cartoonify JP2 afbeeldingen - Java

import com.aspose.imaging.*;
import com.aspose.imaging.fileformats.png.PngImage;
import com.aspose.imaging.imagefilters.filteroptions.FilterOptionsBase;
import com.aspose.imaging.imagefilters.filteroptions.MedianFilterOptions;
import com.aspose.imaging.imageoptions.PngOptions;
import com.aspose.imaging.masking.ImageMasking;
import com.aspose.imaging.masking.options.MaskingOptions;
import java.io.File;
import java.util.*;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.stream.Collectors;
cartoonify();
public static void cartoonify()
{
filterImages(image ->
{
try (PngImage processedImage = new PngImage(image))
{
image.resize(image.getWidth() * 2, image.getHeight(), ResizeType.LeftTopToLeftTop);
ImageFilterExtensions.cartoonify(processedImage);
Graphics gr = new Graphics(image);
gr.drawImage(processedImage, processedImage.getWidth(), 0);
gr.drawLine(new Pen(Color.getDarkRed(), 3), processedImage.getWidth(), 0, processedImage.getWidth(), image.getHeight());
}
}, "cartoonify");
}
static String templatesFolder = "D:\\TestData\\";
public static void filterImages(Consumer<RasterImage> doFilter, String filterName)
{
List<String> rasterFormats = Arrays.asList("jpg", "png", "bmp", "apng", "dicom",
"jp2", "j2k", "tga", "webp", "tif", "gif", "ico");
List<String> vectorFormats = Arrays.asList("svg", "otg", "odg", "eps", "wmf", "emf", "wmz", "emz", "cmx", "cdr");
List<String> allFormats = new LinkedList<>(rasterFormats);
allFormats.addAll(vectorFormats);
allFormats.forEach(
formatExt ->
{
String inputFile = templatesFolder + "template." + formatExt;
boolean isVectorFormat = vectorFormats.contains(formatExt);
//Need to rasterize vector formats before background remove
if (isVectorFormat)
{
inputFile = rasterizeVectorImage(formatExt, inputFile);
}
String outputFile = templatesFolder + String.format("%s_%s.png", filterName, formatExt);
System.out.println("Processing " + formatExt);
try (RasterImage image = (RasterImage) Image.load(inputFile))
{
doFilter.accept(image);
//If image is multipage save each page to png to demonstrate results
if (image instanceof IMultipageImage && ((IMultipageImage) image).getPageCount() > 1)
{
IMultipageImage multiPage = (IMultipageImage) image;
final int pageCount = multiPage.getPageCount();
final Image[] pages = multiPage.getPages();
for (int pageIndex = 0; pageIndex < pageCount; pageIndex++)
{
String fileName = String.format("%s_page%d_%s.png", filterName, pageIndex, formatExt);
pages[pageIndex].save(fileName, new PngOptions());
}
}
else
{
image.save(outputFile, new PngOptions());
}
}
//Remove rasterized vector image
if (isVectorFormat)
{
new File(inputFile).delete();
}
}
);
}
private static String rasterizeVectorImage(String formatExt, String inputFile)
{
String outputFile = templatesFolder + "rasterized." + formatExt + ".png";
try (Image image = Image.load(inputFile))
{
image.save(outputFile, new PngOptions());
}
return outputFile;
}
interface IImageDataContext
{
void applyData();
}
class ImageFilterExtensions
{
public static void cartoonify(RasterImage image)
{
try (RasterImage outlines = detectOutlines(image, Color.getBlack()))
{
image.adjustBrightness(30);
image.filter(image.getBounds(), new MedianFilterOptions(7));
Graphics gr = new Graphics(image);
gr.drawImage(outlines, Point.getEmpty());
}
}
public static RasterImage detectOutlines(RasterImage image, Color outlineColor)
{
PngImage outlines = new PngImage(image);
IImageDataContext ctx = getDataContext(outlines);
applyConvolutionFilter(ctx, ConvolutionFilterOptions.getBlur());
applyConvolutionFilter(ctx, ConvolutionFilterOptions.getOutline());
ctx.applyData();
outlines.binarizeFixed((byte)30);
ImageMasking.applyMask(outlines, outlines, new MaskingOptions()
{{
setBackgroundReplacementColor(Color.getTransparent());
}});
outlines.replaceColor(Color.fromArgb(255, 255, 255), (byte)0, outlineColor);
applyConvolutionFilter(outlines, ConvolutionFilterOptions.getBlur());
return outlines;
}
public static RasterImage applyOperationToRasterImage(RasterImage image, Consumer<RasterImage> operation)
{
if (image instanceof IMultipageImage)
{
IMultipageImage multipage = (IMultipageImage) image;
for (Image page : multipage.getPages())
{
operation.accept((RasterImage) page);
}
}
else
{
operation.accept(image);
}
return image;
}
public static RasterImage applyFilter(RasterImage image, FilterOptionsBase filterOptions)
{
return applyOperationToRasterImage(image, img ->
img.filter(img.getBounds(), filterOptions));
}
public static RasterImage applyConvolutionFilter(RasterImage image, ConvolutionFilterOptions filterOptions)
{
return applyOperationToRasterImage(image, img ->
{
ImagePixelsLoader pixelsLoader = new ImagePixelsLoader(img.getBounds());
img.loadPartialArgb32Pixels(img.getBounds(), pixelsLoader);
PixelBuffer outBuffer = new PixelBuffer(img.getBounds(), new int[img.getWidth() * img.getHeight()]);
ConvolutionFilter.doFiltering(pixelsLoader.getPixelsBuffer(), outBuffer, filterOptions);
img.saveArgb32Pixels(outBuffer.getRectangle(), outBuffer.getPixels());
});
}
public static IImageDataContext getDataContext(RasterImage image)
{
if (image instanceof IMultipageImage)
{
return new MultipageDataContext(
Arrays.stream(((IMultipageImage)image).getPages()).map(page -> {
ImageDataContext buf = new ImageDataContext((RasterImage) page);
buf.setBuffer(getImageBuffer((RasterImage)page));
return buf;
}).collect(Collectors.toList()));
}
ImageDataContext buf = new ImageDataContext(image);
buf.setBuffer(getImageBuffer(image));
return buf;
}
static IPixelBuffer getImageBuffer(RasterImage img)
{
ImagePixelsLoader pixelsLoader = new ImagePixelsLoader(img.getBounds());
img.loadPartialArgb32Pixels(img.getBounds(), pixelsLoader);
return pixelsLoader.getPixelsBuffer();
}
public static IImageDataContext applyToDataContext(IImageDataContext dataContext,
Function<IPixelBuffer, IPixelBuffer> processor)
{
if (dataContext instanceof MultipageDataContext)
{
for (ImageDataContext context : (MultipageDataContext) dataContext)
{
context.setBuffer(processor.apply(context.getBuffer()));
}
}
if (dataContext instanceof ImageDataContext)
{
ImageDataContext ctx = (ImageDataContext)dataContext;
ctx.setBuffer(processor.apply(ctx.getBuffer()));
}
return dataContext;
}
public static IImageDataContext applyConvolutionFilter(IImageDataContext dataContext,
ConvolutionFilterOptions filterOptions)
{
return applyToDataContext(dataContext, buffer ->
{
PixelBuffer outBuffer = new PixelBuffer(buffer.getRectangle(), new int[buffer.getRectangle().getWidth() * buffer.getRectangle().getHeight()]);
ConvolutionFilter.doFiltering(buffer, outBuffer, filterOptions);
return outBuffer;
});
}
}
class ImageDataContext implements IImageDataContext
{
private final RasterImage image;
private IPixelBuffer buffer;
public ImageDataContext(RasterImage image)
{
this.image = image;
}
public RasterImage getImage()
{
return image;
}
public IPixelBuffer getBuffer()
{
return buffer;
}
public void setBuffer(IPixelBuffer buffer)
{
this.buffer = buffer;
}
public void applyData()
{
this.buffer.saveToImage(this.image);
}
}
class MultipageDataContext extends LinkedList<ImageDataContext> implements IImageDataContext
{
public MultipageDataContext(Collection<ImageDataContext> enumerable)
{
addAll(enumerable);
}
public void applyData()
{
for (ImageDataContext context : this)
{
context.applyData();
}
}
}
class ImagePixelsLoader implements IPartialArgb32PixelLoader
{
private final CompositePixelBuffer pixelsBuffer;
public ImagePixelsLoader(Rectangle rectangle)
{
this.pixelsBuffer = new CompositePixelBuffer(rectangle);
}
public CompositePixelBuffer getPixelsBuffer()
{
return pixelsBuffer;
}
@Override
public void process(Rectangle pixelsRectangle, int[] pixels, Point start, Point end)
{
this.pixelsBuffer.addPixels(pixelsRectangle,pixels);
}
}
interface IPixelBuffer
{
Rectangle getRectangle();
int get(int x, int y);
void set(int x, int y, int value);
void saveToImage(RasterImage image);
}
class PixelBuffer implements IPixelBuffer
{
private final Rectangle rectangle;
private final int[] pixels;
public PixelBuffer(Rectangle rectangle,int[] pixels)
{
this.rectangle = rectangle;
this.pixels = pixels;
}
@Override
public com.aspose.imaging.Rectangle getRectangle()
{
return rectangle;
}
public int[] getPixels()
{
return pixels;
}
@Override
public int get(int x, int y)
{
return pixels[getIndex(x,y)];
}
@Override
public void set(int x, int y, int value)
{
pixels[getIndex(x,y)] = value;
}
public void saveToImage(RasterImage image)
{
image.saveArgb32Pixels(this.rectangle, this.pixels);
}
public boolean contains(int x,int y)
{
return this.rectangle.contains(x,y);
}
private int getIndex(int x,int y)
{
x -= this.rectangle.getLeft();
y -= this.rectangle.getTop();
return x + y * this.rectangle.getWidth();
}
}
class CompositePixelBuffer implements IPixelBuffer
{
private final List<PixelBuffer> _buffers = new ArrayList<>();
private final Rectangle rectangle;
public CompositePixelBuffer(Rectangle rectangle)
{
this.rectangle = rectangle;
}
@Override
public com.aspose.imaging.Rectangle getRectangle()
{
return rectangle;
}
@Override
public int get(int x, int y)
{
return getBuffer(x,y).get(x, y);
}
@Override
public void set(int x, int y, int value)
{
getBuffer(x, y).set(x, y, value);
}
@Override
public void saveToImage(RasterImage image)
{
for (PixelBuffer buffer : this._buffers)
{
buffer.saveToImage(image);
}
}
public void addPixels(Rectangle rectangle,int[] pixels)
{
if(rectangle.intersectsWith(rectangle))
{
this._buffers.add(new PixelBuffer(rectangle,pixels));
}
}
private PixelBuffer getBuffer(int x,int y)
{
return this._buffers.stream().filter(b -> b.contains(x,y)).findFirst().get();
}
}
class ConvolutionFilter
{
public static void doFiltering(
IPixelBuffer inputBuffer,
IPixelBuffer outputBuffer,
ConvolutionFilterOptions options)
{
double factor = options.getFactor();
int bias = options.getBias();
double[][] kernel = options.getKernel();
int filterWidth = kernel[0].length;
int filterCenter = (filterWidth - 1) / 2;
int x, y;
int filterX, filterY, filterPx, filterPy, filterYPos, pixel;
double r, g, b, kernelValue;
int top = inputBuffer.getRectangle().getTop();
int bottom = inputBuffer.getRectangle().getBottom();
int left = inputBuffer.getRectangle().getLeft();
int right = inputBuffer.getRectangle().getRight();
for (y = top; y < bottom; y++)
{
for (x = left; x < right; x++)
{
r = 0;
g = 0;
b = 0;
for (filterY = -filterCenter; filterY <= filterCenter; filterY++)
{
filterYPos = filterY + filterCenter;
filterPy = filterY + y;
if (filterPy >= top && filterPy < bottom)
{
for (filterX = -filterCenter; filterX <= filterCenter; filterX++)
{
filterPx = filterX + x;
if (filterPx >= left && filterPx < right)
{
kernelValue = kernel[filterYPos][filterX + filterCenter];
pixel = inputBuffer.get(filterPx, filterPy);
r += ((pixel >> 16) & 0xFF) * kernelValue;
g += ((pixel >> 8) & 0xFF) * kernelValue;
b += (pixel & 0xFF) * kernelValue;
}
}
}
}
r = (factor * r) + bias;
g = (factor * g) + bias;
b = (factor * b) + bias;
r = r > 255 ? 255 : (r < 0 ? 0 : r);
g = g > 255 ? 255 : (g < 0 ? 0 : g);
b = b > 255 ? 255 : (b < 0 ? 0 : b);
outputBuffer.set(x, y, (inputBuffer.get(x, y) & 0xFF000000) | ((int)r << 16) | ((int)g << 8) | (int)b);
}
}
}
}
class ConvolutionFilterOptions
{
private double factor = 1.0;
public double getFactor()
{
return factor;
}
public void setFactor(double factor)
{
this.factor = factor;
}
private int bias = 0;
public int getBias()
{
return bias;
}
public void setBias(int bias)
{
this.bias = bias;
}
private double[][] kernel;
public double[][] getKernel()
{
return kernel;
}
public void setKernel(double[][] kernel)
{
this.kernel = kernel;
}
public ConvolutionFilterOptions()
{
}
public ConvolutionFilterOptions(double[][] kernel)
{
this.kernel = kernel;
}
public static ConvolutionFilterOptions getBlur()
{
ConvolutionFilterOptions filterOptions = new ConvolutionFilterOptions();
filterOptions.setKernel(new double[][] { { 1, 2, 1 }, { 2, 4, 2 }, { 1, 2, 1 } });
filterOptions.setFactor(0.25 * 0.25);
return filterOptions;
}
public static ConvolutionFilterOptions getSharpen()
{
return new ConvolutionFilterOptions(new double[][] { { 0, -1, 0 }, { -1, 5, -1 }, { 0, -1, 0 } });
}
public static ConvolutionFilterOptions getEmboss()
{
return new ConvolutionFilterOptions(new double[][] { { -2, -1, 0 }, { -1, 1, 1 }, { 0, 1, 2 } });
}
public static ConvolutionFilterOptions getOutline()
{
return new ConvolutionFilterOptions(new double[][] { { -1, -1, -1 }, { -1, 8, -1 }, { -1, -1, -1 } });
}
public static ConvolutionFilterOptions getBottomSobel()
{
return new ConvolutionFilterOptions(new double[][] { { -1, -2, -1 }, { 0, 0, 0 }, { 1, 2, 1 } });
}
public static ConvolutionFilterOptions getTopSobel()
{
return new ConvolutionFilterOptions(new double[][] { { 1, 2, 1 }, { 0, 0, 0 }, { -1, -2, -1 } });
}
public static ConvolutionFilterOptions getLeftSobel()
{
return new ConvolutionFilterOptions(new double[][] { { 1, 0, -1 }, { 2, 0, -2 }, { 1, 0, -1 } });
}
public static ConvolutionFilterOptions getRightSobel()
{
return new ConvolutionFilterOptions(new double[][] { { -1, 0, 1 }, { -2, 0, 2 }, { -1, 0, 1 } });
}
}
 
  • Over Aspose.Imaging voor Java API

    Aspose.Imaging API is een beeldverwerkingsoplossing voor het maken, wijzigen, tekenen of converteren van afbeeldingen (foto’s) binnen applicaties. Het biedt: platformonafhankelijke beeldverwerking, inclusief maar niet beperkt tot conversies tussen verschillende beeldformaten (inclusief uniforme beeldverwerking van meerdere pagina’s of meerdere frames), aanpassingen zoals tekenen, werken met grafische primitieven, transformaties (formaat wijzigen, bijsnijden, spiegelen en roteren , binarisatie, grijswaarden, aanpassen), geavanceerde functies voor beeldmanipulatie (filteren, dithering, maskeren, rechtzetten) en strategieën voor geheugenoptimalisatie. Het is een op zichzelf staande bibliotheek en is niet afhankelijk van software voor beeldbewerkingen. Men kan eenvoudig hoogwaardige functies voor beeldconversie toevoegen met native API’s binnen projecten. Dit zijn 100% private on-premise API’s en afbeeldingen worden verwerkt op uw servers.

    Cartoonify JP2s via online app

    Cartoonify JP2-documenten door naar onze website met live demo’s te gaan. De live demo heeft de volgende voordelen:

      U hoeft niets te downloaden of in te stellen
      U hoeft geen code te schrijven
      Upload gewoon uw JP2-bestanden en druk op de knop "Cartoonify now"
      Krijg direct de downloadlink voor het resulterende bestand

    JP2 Wat is JP2 Bestandsformaat

    JPEG 2000 (JP2) is een beeldcoderingssysteem en de modernste beeldcompressiestandaard. Ontworpen, met behulp van wavelet-technologie, kan JPEG 2000 verliesvrije inhoud in elke kwaliteit tegelijk coderen. Bovendien heeft JPEG 2000, zonder enige substantiële schade aan de coderingsefficiëntie, de mogelijkheid om dezelfde inhoud op doeltreffende wijze te openen en te decoderen in een verscheidenheid aan andere resoluties en kwaliteiten. De codestromen in JPEG 2000 zijn aanzienlijk schaalbaar met interessegebieden die de mogelijkheid bieden voor ruimtelijke willekeurige toegang. Met tot 16384 verschillende componenten met afmetingen in terapixels en een precisie die kan oplopen tot 38 bits/sample.

    Lees verder

    Andere ondersteunde Cartoonify-indelingen

    Met behulp van Java kan men gemakkelijk verschillende formaten Cartoonificeren, waaronder.

    APNG (Geanimeerde draagbare netwerkgraphics)
    BMP (Bitmapafbeelding)
    ICO (Windows-pictogram)
    JPG (Joint Photographic Experts Group)
    JPEG (Joint Photographic Experts Group)
    DIB (Apparaatonafhankelijke bitmap)
    DICOM (Digitale beeldvorming en communicatie)
    DJVU (Grafisch formaat)
    DNG (Digitale Camera Afbeelding)
    EMF (Verbeterde metabestandsindeling)
    EMZ (Windows gecomprimeerd verbeterd metabestand)
    GIF (Grafisch uitwisselingsformaat)
    J2K (Wavelet gecomprimeerde afbeelding)
    PNG (Draagbare netwerkgrafieken)
    TIFF (Gelabelde afbeeldingsindeling)
    TIF (Gelabelde afbeeldingsindeling)
    WEBP (Rasterwebafbeelding)
    WMF (Microsoft Windows-metabestand)
    WMZ (Gecomprimeerde Windows Media Player-skin)
    TGA (Targa-afbeelding)
    SVG (Schaalbare vectorafbeeldingen)
    EPS (Encapsulated PostScript-taal)
    CDR (Vector tekening afbeelding)
    CMX (Corel Exchange-afbeelding)
    OTG (OpenDocument-standaard)
    ODG (Apache OpenOffice Draw-indeling)